Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-320-factorials-divisible-by-a-huge-integer.md
2022-01-20 20:30:18 +01:00

765 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4ae1000cf542c50ffbf Problem 320: Factorials divisible by a huge integer 5 301977 problem-320-factorials-divisible-by-a-huge-integer

--description--

Let N(i) be the smallest integer n such that n! is divisible by (i!)^{1234567890}

Let S(u) = \sum N(i) for 10 ≤ i ≤ u.

S(1000)=614\\,538\\,266\\,565\\,663.

Find S(1\\,000\\,000)\bmod {10}^{18}.

--hints--

divisibleByHugeInteger() should return 278157919195482660.

assert.strictEqual(divisibleByHugeInteger(), 278157919195482660);

--seed--

--seed-contents--

function divisibleByHugeInteger() {

  return true;
}

divisibleByHugeInteger();

--solutions--

// solution required