Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-375-minimum-of-subsequences.md
2022-01-20 20:30:18 +01:00

973 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4e41000cf542c50fff5 Problem 375: Minimum of subsequences 5 302037 problem-375-minimum-of-subsequences

--description--

Let S_n be an integer sequence produced with the following pseudo-random number generator:

\begin{align} S_0 & = 290\\,797 \\\\ S_{n + 1} & = {S_n}^2\bmod 50\\,515\\,093 \end{align}

Let A(i, j) be the minimum of the numbers S_i, S_{i + 1}, \ldots, S_j for i ≤ j. Let M(N) = \sum A(i, j) for 1 ≤ i ≤ j ≤ N.

We can verify that M(10) = 432\\,256\\,955 and M(10\\,000) = 3\\,264\\,567\\,774\\,119.

Find M(2\\,000\\,000\\,000).

--hints--

minimumOfSubsequences() should return 7435327983715286000.

assert.strictEqual(minimumOfSubsequences(), 7435327983715286000);

--seed--

--seed-contents--

function minimumOfSubsequences() {

  return true;
}

minimumOfSubsequences();

--solutions--

// solution required