Files
freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/project-euler/problem-456-triangles-containing-the-origin-ii.md
2022-01-20 20:30:18 +01:00

51 lines
1.1 KiB
Markdown

---
id: 5900f5351000cf542c510047
title: 'Problem 456: Triangles containing the origin II'
challengeType: 5
forumTopicId: 302130
dashedName: problem-456-triangles-containing-the-origin-ii
---
# --description--
Define:
$$\begin{align} & x_n = ({1248}^n\bmod 32323) - 16161 \\\\ & y_n = ({8421}^n\bmod 30103) - 15051 \\\\ & P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\} \end{align}$$
For example, $$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$
Let $C(n)$ be the number of triangles whose vertices are in $P_n$ which contain the origin in the interior.
Examples:
$$\begin{align} & C(8) = 20 \\\\ & C(600) = 8\\,950\\,634 \\\\ & C(40\\,000) = 2\\,666\\,610\\,948\\,988 \end{align}$$
Find $C(2\\,000\\,000)$.
# --hints--
`trianglesContainingOriginTwo()` should return `333333208685971500`.
```js
assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
```
# --seed--
## --seed-contents--
```js
function trianglesContainingOriginTwo() {
return true;
}
trianglesContainingOriginTwo();
```
# --solutions--
```js
// solution required
```