1.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.7 KiB
		
	
	
	
	
	
	
	
id, challengeType, title, videoUrl, localeTitle
| id | challengeType | title | videoUrl | localeTitle | 
|---|---|---|---|---|
| 5900f4be1000cf542c50ffd1 | 5 | Problem 338: Cutting Rectangular Grid Paper | 问题338:切割矩形网格纸 | 
Description
同样,从尺寸为9×8的纸张中,我们可以制作尺寸为18×4和12×6的矩形。
对于w和h对,让F(w,h)是可以由尺寸为w×h的薄片制成的不同矩形的数量。例如,F(2,1)= 0,F(2,2)= 1,F(9,4)= 3和F(9,8)= 2.注意,与初始一致的矩形不计算在内在F(w,h)。还要注意,尺寸为w×h且尺寸为h×w的矩形不被认为是不同的。
对于整数N,令G(N)为满足0 <h≤w≤N的所有w和h的F(w,h)之和。我们可以验证G(10)= 55,G(103) )= 971745和G(105)= 9992617687。
找到G(1012)。给你的答案模数108。
Instructions
Tests
tests:
  - text: <code>euler338()</code>应该返回15614292。
    testString: 'assert.strictEqual(euler338(), 15614292, "<code>euler338()</code> should return 15614292.");'
Challenge Seed
function euler338() {
  // Good luck!
  return true;
}
euler338();
Solution
// solution required