64 lines
1.2 KiB
Markdown
64 lines
1.2 KiB
Markdown
---
|
||
id: 5
|
||
localeTitle: 5900f3e61000cf542c50fef9
|
||
challengeType: 5
|
||
title: 'Problem 122: Efficient exponentiation'
|
||
---
|
||
|
||
## Description
|
||
<section id='description'>
|
||
La forma más ingenua de calcular n15 requiere catorce multiplicaciones:
|
||
n × n × ... × n = n15
|
||
Pero utilizando un método "binario" puedes calcularlo en seis multiplicaciones:
|
||
n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15
|
||
Sin embargo, todavía es posible calcularlo en solo cinco multiplicaciones:
|
||
n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15
|
||
Definiremos m (k) como el número mínimo de multiplicaciones para calcular nk; por ejemplo m (15) = 5.
|
||
Para 1 ≤ k ≤ 200, encuentre ∑ m (k).
|
||
</section>
|
||
|
||
## Instructions
|
||
<section id='instructions'>
|
||
|
||
</section>
|
||
|
||
## Tests
|
||
<section id='tests'>
|
||
|
||
```yml
|
||
tests:
|
||
- text: <code>euler122()</code> debe devolver 1582.
|
||
testString: 'assert.strictEqual(euler122(), 1582, "<code>euler122()</code> should return 1582.");'
|
||
|
||
```
|
||
|
||
</section>
|
||
|
||
## Challenge Seed
|
||
<section id='challengeSeed'>
|
||
|
||
<div id='js-seed'>
|
||
|
||
```js
|
||
function euler122() {
|
||
// Good luck!
|
||
return true;
|
||
}
|
||
|
||
euler122();
|
||
```
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</section>
|
||
|
||
## Solution
|
||
<section id='solution'>
|
||
|
||
```js
|
||
// solution required
|
||
```
|
||
</section>
|