* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
865 B
865 B
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f54b1000cf542c51005d | Problem 479: Roots on the Rise | 5 | 302156 | problem-479-roots-on-the-rise |
--description--
Let ak, bk, and ck represent the three solutions (real or complex numbers) to the expression 1/x = (k/x)2(k+x2) - kx.
For instance, for k = 5, we see that {a5, b5, c5} is approximately {5.727244, -0.363622+2.057397i, -0.363622-2.057397i}.
Let S(n) = Σ (ak+bk)p(bk+ck)p(ck+ak)p for all integers p, k such that 1 ≤ p, k ≤ n.
Interestingly, S(n) is always an integer. For example, S(4) = 51160.
Find S(106) modulo 1 000 000 007.
--hints--
euler479()
should return 191541795.
assert.strictEqual(euler479(), 191541795);
--seed--
--seed-contents--
function euler479() {
return true;
}
euler479();
--solutions--
// solution required