1.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.2 KiB
		
	
	
	
	
	
	
	
id, challengeType, title
| id | challengeType | title | 
|---|---|---|
| 5900f5091000cf542c51001b | 5 | Problem 408: Admissible paths through a grid | 
Description
Consider a path from point (x1, y1) to point (x2, y2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.
Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007 = 341920854.
Find P(10 000 000) mod 1 000 000 007.
Instructions
Tests
tests:
  - text: <code>euler408()</code> should return 299742733.
    testString: 'assert.strictEqual(euler408(), 299742733, ''<code>euler408()</code> should return 299742733.'');'
Challenge Seed
function euler408() {
  // Good luck!
  return true;
}
euler408();
Solution
// solution required