55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4751000cf542c50ff87
 | |
| title: 'Problem 264: Triangle Centres'
 | |
| challengeType: 5
 | |
| forumTopicId: 301913
 | |
| dashedName: problem-264-triangle-centres
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Consider all the triangles having:
 | |
| 
 | |
| All their vertices on lattice points.
 | |
| 
 | |
| Circumcentre at the origin O.
 | |
| 
 | |
| Orthocentre at the point H(5, 0).
 | |
| 
 | |
| There are nine such triangles having a perimeter ≤ 50.
 | |
| 
 | |
| Listed and shown in ascending order of their perimeter, they are:
 | |
| 
 | |
| A(-4, 3), B(5, 0), C(4, -3) A(4, 3), B(5, 0), C(-4, -3) A(-3, 4), B(5, 0), C(3, -4) A(3, 4), B(5, 0), C(-3, -4) A(0, 5), B(5, 0), C(0, -5) A(1, 8), B(8, -1), C(-4, -7) A(8, 1), B(1, -8), C(-4, 7) A(2, 9), B(9, -2), C(-6, -7) A(9, 2), B(2, -9), C(-6, 7)
 | |
| 
 | |
| The sum of their perimeters, rounded to four decimal places, is 291.0089.
 | |
| 
 | |
| Find all such triangles with a perimeter ≤ 105. Enter as your answer the sum of their perimeters rounded to four decimal places.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler264()` should return 2816417.1055.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler264(), 2816417.1055);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler264() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler264();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |