* fix: clean-up Project Euler 281-300 * fix: missing image extension * fix: missing power Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing subscript Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			50 lines
		
	
	
		
			923 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			923 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4861000cf542c50ff99
 | |
| title: 'Problem 282: The Ackermann function'
 | |
| challengeType: 5
 | |
| forumTopicId: 301933
 | |
| dashedName: problem-282-the-ackermann-function
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| For non-negative integers $m$, $n$, the Ackermann function $A(m, n)$ is defined as follows:
 | |
| 
 | |
| $$A(m, n) =
 | |
| \begin{cases}
 | |
| n + 1                 & \text{if $m = 0$}             \\\\
 | |
| A(m - 1, 1)           & \text{if $m > 0$ and $n = 0$} \\\\
 | |
| A(m - 1, A(m, n - 1)) & \text{if $m > 0$ and $n > 0$}
 | |
| \end{cases}$$
 | |
| 
 | |
| For example $A(1, 0) = 2$, $A(2, 2) = 7$ and $A(3, 4) = 125$.
 | |
| 
 | |
| Find $\displaystyle\sum_{n = 0}^6 A(n, n)$ and give your answer mod ${14}^8$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `ackermanFunction()` should return `1098988351`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(ackermanFunction(), 1098988351);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function ackermanFunction() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ackermanFunction();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |