* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4b01000cf542c50ffc2
 | |
| title: 'Problem 323: Bitwise-OR operations on random integers'
 | |
| challengeType: 5
 | |
| forumTopicId: 301980
 | |
| dashedName: problem-323-bitwise-or-operations-on-random-integers
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let $y_0, y_1, y_2, \ldots$ be a sequence of random unsigned 32 bit integers
 | |
| 
 | |
| (i.e. $0 ≤ y_i < 2^{32}$, every value equally likely).
 | |
| 
 | |
| For the sequence $x_i$ the following recursion is given:
 | |
| 
 | |
| - $x_0 = 0$ and
 | |
| - $x_i = x_{i - 1} \mathbf{|} y_{i - 1}$, for $i > 0$. ($\mathbf{|}$ is the bitwise-OR operator)
 | |
| 
 | |
| It can be seen that eventually there will be an index $N$ such that $x_i = 2^{32} - 1$ (a bit-pattern of all ones) for all $i ≥ N$.
 | |
| 
 | |
| Find the expected value of $N$. Give your answer rounded to 10 digits after the decimal point.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `bitwiseOrOnRandomIntegers()` should return `6.3551758451`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(bitwiseOrOnRandomIntegers(), 6.3551758451);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function bitwiseOrOnRandomIntegers() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bitwiseOrOnRandomIntegers();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |