* fix: clean-up Project Euler 321-340 * fix: typo * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			51 lines
		
	
	
		
			1011 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1011 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4b21000cf542c50ffc5
 | |
| title: 'Problem 326: Modulo Summations'
 | |
| challengeType: 5
 | |
| forumTopicId: 301983
 | |
| dashedName: problem-326-modulo-summations
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let an be a sequence recursively defined by: $a_1 = 1$, $\displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n$.
 | |
| 
 | |
| So the first 10 elements of $a_n$ are: 1, 1, 0, 3, 0, 3, 5, 4, 1, 9.
 | |
| 
 | |
| Let $f(N, M)$ represent the number of pairs $(p, q)$ such that:
 | |
| 
 | |
| $$ 1 \le p \le q \le N \\; \text{and} \\; \left(\sum_{i = p}^q a_i\right)\bmod M = 0$$
 | |
| 
 | |
| It can be seen that $f(10, 10) = 4$ with the pairs (3,3), (5,5), (7,9) and (9,10).
 | |
| 
 | |
| You are also given that $f({10}^4, {10}^3) = 97\\,158$.
 | |
| 
 | |
| Find $f({10}^{12}, {10}^6)$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `moduloSummations()` should return `1966666166408794400`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(moduloSummations(), 1966666166408794400);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function moduloSummations() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| moduloSummations();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |