* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			49 lines
		
	
	
		
			1013 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			1013 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5261000cf542c510038
 | |
| title: 'Problem 441: The inverse summation of coprime couples'
 | |
| challengeType: 5
 | |
| forumTopicId: 302113
 | |
| dashedName: problem-441-the-inverse-summation-of-coprime-couples
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| For an integer $M$, we define $R(M)$ as the sum of $\frac{1}{p·q}$ for all the integer pairs $p$ and $q$ which satisfy all of these conditions:
 | |
| 
 | |
| - $1 ≤ p < q ≤ M$
 | |
| - $p + q ≥ M$
 | |
| - $p$ and $q$ are coprime.
 | |
| 
 | |
| We also define $S(N)$ as the sum of $R(i)$ for $2 ≤ i ≤ N$.
 | |
| 
 | |
| We can verify that $S(2) = R(2) = \frac{1}{2}$, $S(10) ≈ 6.9147$ and $S(100) ≈ 58.2962$.
 | |
| 
 | |
| Find $S({10}^7)$. Give your answer rounded to four decimal places.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `inverseSummationCoprimeCouples()` should return `5000088.8395`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(inverseSummationCoprimeCouples(), 5000088.8395);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function inverseSummationCoprimeCouples() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| inverseSummationCoprimeCouples();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |