* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			51 lines
		
	
	
		
			970 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			970 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f52c1000cf542c51003d
 | |
| title: 'Problem 446: Retractions B'
 | |
| challengeType: 5
 | |
| forumTopicId: 302118
 | |
| dashedName: problem-446-retractions-b
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| For every integer $n > 1$, the family of functions $f_{n, a, b}$ is defined by:
 | |
| 
 | |
| $f_{n, a, b}(x) ≡ ax + b\bmod n$ for $a, b, x$ integer and $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$.
 | |
| 
 | |
| We will call $f_{n, a, b}$ a retraction if $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ for every $0 \le x \lt n$.
 | |
| 
 | |
| Let $R(n)$ be the number of retractions for $n$.
 | |
| 
 | |
| $F(N) = \displaystyle\sum_{n = 1}^N R(n^4 + 4)$.
 | |
| 
 | |
| $F(1024) = 77\\,532\\,377\\,300\\,600$.
 | |
| 
 | |
| Find $F({10}^7)$. Give your answer modulo $1\\,000\\,000\\,007$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `retractionsB()` should return `907803852`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(retractionsB(), 907803852);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function retractionsB() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| retractionsB();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |