* fix: clean-up Project Euler 462-480 * fix: missing image extension * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			61 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5411000cf542c510054
 | |
| title: 'Problem 468: Smooth divisors of binomial coefficients'
 | |
| challengeType: 5
 | |
| forumTopicId: 302143
 | |
| dashedName: problem-468-smooth-divisors-of-binomial-coefficients
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| An integer is called B-smooth if none of its prime factors is greater than $B$.
 | |
| 
 | |
| Let $SB(n)$ be the largest B-smooth divisor of $n$.
 | |
| 
 | |
| Examples:
 | |
| 
 | |
| $$\begin{align}
 | |
|   & S_1(10) = 1 \\\\
 | |
|   & S_4(2\\,100) = 12 \\\\
 | |
|   & S_{17}(2\\,496\\,144) = 5\\,712
 | |
| \end{align}$$
 | |
| 
 | |
| Define $F(n) = \displaystyle\sum_{B = 1}^n \sum_{r = 0}^n S_B(\displaystyle\binom{n}{r})$. Here, $\displaystyle\binom{n}{r}$ denotes the binomial coefficient.
 | |
| 
 | |
| Examples:
 | |
| 
 | |
| $$\begin{align}
 | |
|   & F(11) = 3132 \\\\
 | |
|   & F(1\\,111)\bmod 1\\,000\\,000\\,993 = 706\\,036\\,312 \\\\
 | |
|   & F(111\\,111)\bmod 1\\,000\\,000\\,993 = 22\\,156\\,169
 | |
| \end{align}$$
 | |
| 
 | |
| Find $F(11\\,111\\,111)\bmod 1\\,000\\,000\\,993$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `smoothDivisorsOfBinomialCoefficients()` should return `852950321`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(smoothDivisorsOfBinomialCoefficients(), 852950321);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function smoothDivisorsOfBinomialCoefficients() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| smoothDivisorsOfBinomialCoefficients();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |