53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			965 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f3e61000cf542c50fef9
 | 
						||
title: 'Problem 122: Efficient exponentiation'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 301749
 | 
						||
dashedName: problem-122-efficient-exponentiation
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
The most naive way of computing n15 requires fourteen multiplications:
 | 
						||
 | 
						||
n × n × ... × n = n15
 | 
						||
 | 
						||
But using a "binary" method you can compute it in six multiplications:
 | 
						||
 | 
						||
n × n = n2n2 × n2 = n4n4 × n4 = n8n8 × n4 = n12n12 × n2 = n14n14 × n = n15
 | 
						||
 | 
						||
However it is yet possible to compute it in only five multiplications:
 | 
						||
 | 
						||
n × n = n2n2 × n = n3n3 × n3 = n6n6 × n6 = n12n12 × n3 = n15
 | 
						||
 | 
						||
We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5.
 | 
						||
 | 
						||
For 1 ≤ k ≤ 200, find ∑ m(k).
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`euler122()` should return 1582.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(euler122(), 1582);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function euler122() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler122();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |