49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			981 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f4421000cf542c50ff55
 | 
						|
title: 'Problem 214: Totient Chains'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 301856
 | 
						|
dashedName: problem-214-totient-chains
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
Let φ be Euler's totient function, i.e. for a natural number n,
 | 
						|
 | 
						|
φ(n) is the number of k, 1 ≤ k ≤ n, for which gcd(k,n) = 1.
 | 
						|
 | 
						|
By iterating φ, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:
 | 
						|
 | 
						|
5,4,2,1 7,6,2,1 8,4,2,1 9,6,2,1 10,4,2,1 12,4,2,1 14,6,2,1 18,6,2,1
 | 
						|
 | 
						|
Only two of these chains start with a prime, their sum is 12.
 | 
						|
 | 
						|
What is the sum of all primes less than 40000000 which generate a chain of length 25?
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`euler214()` should return 1677366278943.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(euler214(), 1677366278943);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function euler214() {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
euler214();
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
// solution required
 | 
						|
```
 |