45 lines
		
	
	
		
			848 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			848 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f5131000cf542c510024
 | ||
| title: 'Problem 421: Prime factors of n15+1'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302091
 | ||
| dashedName: problem-421-prime-factors-of-n151
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Numbers of the form n15+1 are composite for every integer n > 1.
 | ||
| 
 | ||
| For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m.
 | ||
| 
 | ||
| E.g. 215+1 = 3×3×11×331. So s(2,10) = 3 and s(2,1000) = 3+11+331 = 345.
 | ||
| 
 | ||
| Also 1015+1 = 7×11×13×211×241×2161×9091. So s(10,100) = 31 and s(10,1000) = 483. Find ∑ s(n,108) for 1 ≤ n ≤ 1011.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler421()` should return 2304215802083466200.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler421(), 2304215802083466200);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler421() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler421();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |