2.0 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			2.0 KiB
		
	
	
	
	
	
	
	
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 5900f39a1000cf542c50fead | Problem 46: Goldbach's other conjecture | 5 | 302134 | problem-46-goldbachs-other-conjecture | 
--description--
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
  9 = 7 + 2×12
15 = 7 + 2×22
21 = 3 + 2×32
25 = 7 + 2×32
27 = 19 + 2×22
33 = 31 + 2×12
15 = 7 + 2×22
21 = 3 + 2×32
25 = 7 + 2×32
27 = 19 + 2×22
33 = 31 + 2×12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
--hints--
goldbachsOtherConjecture() should return a number.
assert(typeof goldbachsOtherConjecture() === 'number');
goldbachsOtherConjecture() should return 5777.
assert.strictEqual(goldbachsOtherConjecture(), 5777);
--seed--
--seed-contents--
function goldbachsOtherConjecture() {
  return true;
}
goldbachsOtherConjecture();
--solutions--
function goldbachsOtherConjecture() {  function isPrime(num) {
    if (num < 2) {
      return false;
    } else if (num === 2) {
      return true;
    }
    const sqrtOfNum = Math.floor(num ** 0.5);
    for (let i = 2; i <= sqrtOfNum + 1; i++) {
      if (num % i === 0) {
        return false;
      }
    }
    return true;
  }
  function isSquare(num) {
    return Math.sqrt(num) % 1 === 0;
  }
  // construct a list of prime numbers
  const primes = [];
  for (let i = 2; primes.length < 1000; i++) {
    if (isPrime(i)) primes.push(i);
  }
  let num = 3;
  let answer;
  while (!answer) {
    num += 2;
    if (!isPrime(num)) {
      let found = false;
      for (let primeI = 0; primeI < primes.length && !found; primeI++) {
        const square = (num - primes[primeI]) / 2;
        if (isSquare(square)) {
          found = true;
          break;
        }
      }
      if (!found) answer = num;
    }
  }
  return answer;
}