120 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3c71000cf542c50feda
 | |
| title: 'Problem 91: Right triangles with integer coordinates'
 | |
| challengeType: 5
 | |
| forumTopicId: 302208
 | |
| dashedName: problem-91-right-triangles-with-integer-coordinates
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The points ${P}(x_1, y_1)$ and ${Q}(x_2, y_2)$ are plotted at integer co-ordinates and are joined to the origin, ${O}(0, 0)$, to form ${\Delta}OPQ$.
 | |
| 
 | |
| <img class="img-responsive center-block" alt="a graph plotting points P (x_1, y_1) and Q(x_2, y_2) at integer coordinates that are joined to the origin O (0, 0)" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-1.png" style="background-color: white; padding: 10px;" />
 | |
| 
 | |
| There are exactly fourteen triangles containing a right angle that can be formed when each co-ordinate lies between 0 and 2 inclusive; that is, $0 ≤ x_1, y_1, x_2, y_2 ≤ 2$.
 | |
| 
 | |
| <img class="img-responsive center-block" alt="a diagram showing the 14 triangles containing a right angle that can be formed when each coordinate is between 0 and 2" src="https://cdn-media-1.freecodecamp.org/project-euler/right-triangles-integer-coordinates-2.png" style="background-color: white; padding: 10px;" />
 | |
| 
 | |
| Given that $0 ≤ x_1, y_1, x_2, y_2 ≤ limit$, how many right triangles can be formed?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `rightTrianglesIntCoords(2)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof rightTrianglesIntCoords(2) === 'number');
 | |
| ```
 | |
| 
 | |
| `rightTrianglesIntCoords(2)` should return `14`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(rightTrianglesIntCoords(2), 14);
 | |
| ```
 | |
| 
 | |
| `rightTrianglesIntCoords(10)` should return `448`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(rightTrianglesIntCoords(10), 448);
 | |
| ```
 | |
| 
 | |
| `rightTrianglesIntCoords(25)` should return `3207`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(rightTrianglesIntCoords(25), 3207);
 | |
| ```
 | |
| 
 | |
| `rightTrianglesIntCoords(50)` should return `14234`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(rightTrianglesIntCoords(50), 14234);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function rightTrianglesIntCoords(limit) {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| rightTrianglesIntCoords(2);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function rightTrianglesIntCoords(limit) {
 | |
|   function isRightTriangle(points) {
 | |
|     for (let i = 0; i < points.length; i++) {
 | |
|       const pointA = points[i];
 | |
|       const pointB = points[(i + 1) % 3];
 | |
|       const pointC = points[(i + 2) % 3];
 | |
|       const vectorAB = [pointB[0] - pointA[0], pointB[1] - pointA[1]];
 | |
|       const vectorAC = [pointC[0] - pointA[0], pointC[1] - pointA[1]];
 | |
| 
 | |
|       if (isRightAngleBetween(vectorAB, vectorAC)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   function isRightAngleBetween(vector1, vector2) {
 | |
|     return vector1[0] * vector2[0] + vector1[1] * vector2[1] === 0;
 | |
|   }
 | |
| 
 | |
|   function getSetKey(points) {
 | |
|     return (
 | |
|       '0.0,' +
 | |
|       points
 | |
|         .sort((a, b) => a[0] - b[0])
 | |
|         .map(point => point.join('.'))
 | |
|         .join(',')
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   const pointO = [0, 0];
 | |
|   const rightTriangles = new Set();
 | |
|   for (let x1 = 1; x1 <= limit; x1++) {
 | |
|     for (let y1 = 0; y1 <= limit; y1++) {
 | |
|       const pointP = [x1, y1];
 | |
|       for (let x2 = 0; x2 <= limit; x2++) {
 | |
|         for (let y2 = 1; y2 <= limit; y2++) {
 | |
|           const pointQ = [x2, y2];
 | |
|           if (pointP[0] === pointQ[0] && pointP[1] === pointQ[1]) {
 | |
|             continue;
 | |
|           }
 | |
|           if (isRightTriangle([pointO, pointP, pointQ])) {
 | |
|             rightTriangles.add(getSetKey([pointP, pointQ]));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rightTriangles.size;
 | |
| }
 | |
| ```
 |