119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3b21000cf542c50fec5
 | |
| title: 'Problema 70: Permutações de totientes'
 | |
| challengeType: 5
 | |
| forumTopicId: 302183
 | |
| dashedName: problem-70-totient-permutation
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| A função totiente de Euler, ${\phi}(n)$ (às vezes chamada de função phi), é usada para determinar a quantidade de números menores que `n`, que são primos próximos de `n`. Por exemplo, 1, 2, 4, 5, 7 e 8 são todos inferiores a nove e primos relativos de nove, ${\phi}(9) = 6$. O número 1 é considerado um primo relativo para todos os números positivos, portanto ${\phi}(1) = 1$.
 | |
| 
 | |
| Curiosamente, ${\phi}(87109) = 79180$, e pode ser visto que 87109 é uma permutação de 79180.
 | |
| 
 | |
| Encontre o valor de `n`, 1 < `n` < `limit`, onde ${\phi}(n)$ é uma permutação de `n` e a razão $\displaystyle\frac{n}{{\phi}(n)}$ produz um mínimo.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `totientPermutation(10000)` deve retornar um número.
 | |
| 
 | |
| ```js
 | |
| assert(typeof totientPermutation(10000) === 'number');
 | |
| ```
 | |
| 
 | |
| `totientPermutation(10000)` deve retornar `4435`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(totientPermutation(10000), 4435);
 | |
| ```
 | |
| 
 | |
| `totientPermutation(100000)` deve retornar `75841`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(totientPermutation(100000), 75841);
 | |
| ```
 | |
| 
 | |
| `totientPermutation(500000)` deve retornar `474883`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(totientPermutation(500000), 474883);
 | |
| ```
 | |
| 
 | |
| `totientPermutation(10000000)` deve retornar `8319823`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(totientPermutation(10000000), 8319823);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function totientPermutation(limit) {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| totientPermutation(10000);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function totientPermutation(limit) {
 | |
|   function getSievePrimes(max) {
 | |
|     const primes = [];
 | |
|     const primesMap = new Array(max).fill(true);
 | |
|     primesMap[0] = false;
 | |
|     primesMap[1] = false;
 | |
| 
 | |
|     for (let i = 2; i < max; i += 2) {
 | |
|       if (primesMap[i]) {
 | |
|         primes.push(i);
 | |
|         for (let j = i * i; j < max; j += i) {
 | |
|           primesMap[j] = false;
 | |
|         }
 | |
|       }
 | |
|       if (i === 2) {
 | |
|         i = 1;
 | |
|       }
 | |
|     }
 | |
|     return primes;
 | |
|   }
 | |
| 
 | |
|   function sortDigits(number) {
 | |
|     return number.toString().split('').sort().join('');
 | |
|   }
 | |
| 
 | |
|   function isPermutation(numberA, numberB) {
 | |
|     return sortDigits(numberA) === sortDigits(numberB);
 | |
|   }
 | |
| 
 | |
|   const MAX_PRIME = 4000;
 | |
|   const primes = getSievePrimes(MAX_PRIME);
 | |
| 
 | |
|   let nValue = 1;
 | |
|   let minRatio = Infinity;
 | |
| 
 | |
|   for (let i = 1; i < primes.length; i++) {
 | |
|     for (let j = i + 1; j < primes.length; j++) {
 | |
|       const num = primes[i] * primes[j];
 | |
|       if (num > limit) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       const phi = (primes[i] - 1) * (primes[j] - 1);
 | |
|       const ratio = num / phi;
 | |
| 
 | |
|       if (minRatio > ratio && isPermutation(num, phi)) {
 | |
|         nValue = num;
 | |
|         minRatio = ratio;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return nValue;
 | |
| }
 | |
| ```
 |