* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			83 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5a23c84252665b21eecc8041
 | |
| title: Sum of a series
 | |
| challengeType: 5
 | |
| forumTopicId: 302333
 | |
| dashedName: sum-of-a-series
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Compute the **n**<sup>th</sup> term of a [series](<https://en.wikipedia.org/wiki/Series (mathematics)>), i.e. the sum of the **n** first terms of the corresponding [sequence](https://en.wikipedia.org/wiki/sequence). Informally this value, or its limit when **n** tends to infinity, is also called the *sum of the series*, thus the title of this task. For this task, use: $S*n = \\sum*{k=1}^n \\frac{1}{k^2}$ and compute $S\_{1000}$ This approximates the [zeta function](<https://en.wikipedia.org/wiki/Riemann zeta function>) for S=2, whose exact value $\\zeta(2) = {\\pi^2\\over 6}$ is the solution of the [Basel problem](<https://en.wikipedia.org/wiki/Basel problem>).
 | |
| 
 | |
| # --instructions--
 | |
| 
 | |
| Write a function that take $a$ and $b$ as parameters and returns the sum of $a^{th}$ to $b^{th}$ members of the sequence.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `sum` should be a function.
 | |
| 
 | |
| ```js
 | |
| assert(typeof sum == 'function');
 | |
| ```
 | |
| 
 | |
| `sum(1, 100)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof sum(1, 100) == 'number');
 | |
| ```
 | |
| 
 | |
| `sum(1, 100)` should return `1.6349839001848923`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(sum(1, 100), 1.6349839001848923);
 | |
| ```
 | |
| 
 | |
| `sum(33, 46)` should return `0.009262256361481223`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(sum(33, 46), 0.009262256361481223);
 | |
| ```
 | |
| 
 | |
| `sum(21, 213)` should return `0.044086990748706555`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(sum(21, 213), 0.044086990748706555);
 | |
| ```
 | |
| 
 | |
| `sum(11, 111)` should return `0.08619778593108679`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(sum(11, 111), 0.08619778593108679);
 | |
| ```
 | |
| 
 | |
| `sum(1, 10)` should return `1.5497677311665408`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(sum(1, 10), 1.5497677311665408);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function sum(a, b) {
 | |
| 
 | |
| }
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function sum(a, b) {
 | |
|   function fn(x) {
 | |
|     return 1 / (x * x);
 | |
|   }
 | |
|   var s = 0;
 | |
|   for (; a <= b; a++) s += fn(a);
 | |
|   return s;
 | |
| }
 | |
| ```
 |