Files
freeCodeCamp/curriculum/challenges/english/08-coding-interview-prep/project-euler/problem-27-quadratic-primes.english.md
Kristofer Koishigawa 6cfd0fc503 fix: improve Project Euler descriptions, challenge seeds, and test cases (#38016)
* fix: improve Project Euler descriptions and test case

Improve formatting of Project Euler test descriptions. Also add poker hands array and new test case for problem 54

* feat: add typeof tests and gave functions proper names for first 100 challenges

* fix: continue fixing test descriptions and adding "before test" sections

* fix: address review comments

* fix: adjust grids in 18 and 67 and fix some text that reference files rather than the given arrays

* fix: implement bug fixes and improvements from review

* fix: remove console.log statements from seed and solution
2020-02-28 06:39:47 -06:00

84 lines
2.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f3871000cf542c50fe9a
challengeType: 5
title: 'Problem 27: Quadratic primes'
forumTopicId: 301919
---
## Description
<section id='description'>
Euler discovered the remarkable quadratic formula:
<div style='margin-left: 4em;'>$n^2 + n + 41$</div>
It turns out that the formula will produce 40 primes for the consecutive integer values $0 \le n \le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by 41, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by 41.
The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \le n \le 79$. The product of the coefficients, 79 and 1601, is 126479.
Considering quadratics of the form:
<div style='margin-left: 4em;'>
$n^2 + an + b$, where $|a| < range$ and $|b| \le range$<br>
where $|n|$ is the modulus/absolute value of $n$<br>
e.g. $|11| = 11$ and $|-4| = 4$<br>
</div>
Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$.
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>quadraticPrimes(200)</code> should return a number.
testString: assert(typeof quadraticPrimes(200) === 'number');
- text: <code>quadraticPrimes(200)</code> should return -4925.
testString: assert(quadraticPrimes(200) == -4925);
- text: <code>quadraticPrimes(500)</code> should return -18901.
testString: assert(quadraticPrimes(500) == -18901);
- text: <code>quadraticPrimes(800)</code> should return -43835.
testString: assert(quadraticPrimes(800) == -43835);
- text: <code>quadraticPrimes(1000)</code> should return -59231.
testString: assert(quadraticPrimes(1000) == -59231);
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function quadraticPrimes(range) {
// Good luck!
return range;
}
quadraticPrimes(1000);
```
</div>
</section>
## Solution
<section id='solution'>
```js
// solution required
```
</section>