* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			55 lines
		
	
	
		
			908 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			908 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5e8f2f13c4cdbe86b5c72da2
 | |
| title: 'Natural Language Processing With RNNs: Training the Model'
 | |
| challengeType: 11
 | |
| videoId: hEUiK7j9UI8
 | |
| dashedName: natural-language-processing-with-rnns-training-the-model
 | |
| ---
 | |
| 
 | |
| # --question--
 | |
| 
 | |
| ## --text--
 | |
| 
 | |
| Fill in the blanks below to save your model's checkpoints in the `./checkpoints` directory and call the latest checkpoint for training:
 | |
| 
 | |
| ```py
 | |
| checkpoint_dir = __A__
 | |
| checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
 | |
| 
 | |
| checkpoint_callback = tf.keras.callbacks.__B__(
 | |
|     filepath=checkpoint_prefix,
 | |
|     save_weights_only=True
 | |
| )
 | |
| 
 | |
| history = model.fit(data, epochs=2, callbacks=[__C__])
 | |
| ```
 | |
| 
 | |
| ## --answers--
 | |
| 
 | |
| A: `'./training_checkpoints'`
 | |
| 
 | |
| B: `ModelCheckpoint`
 | |
| 
 | |
| C: `checkpoint_prefix`
 | |
| 
 | |
| ---
 | |
| 
 | |
| A: `'./checkpoints'`
 | |
| 
 | |
| B: `ModelCheckpoint`
 | |
| 
 | |
| C: `checkpoint_callback`
 | |
| 
 | |
| ---
 | |
| 
 | |
| A: `'./checkpoints'`
 | |
| 
 | |
| B: `BaseLogger`
 | |
| 
 | |
| C: `checkpoint_callback`
 | |
| 
 | |
| ## --video-solution--
 | |
| 
 | |
| 2
 | |
| 
 |