51 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5411000cf542c510052
 | |
| title: 'Problem 467: Superinteger'
 | |
| challengeType: 5
 | |
| forumTopicId: 302142
 | |
| dashedName: problem-467-superinteger
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| An integer s is called a superinteger of another integer n if the digits of n form a subsequence of the digits of s.
 | |
| 
 | |
| For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151.
 | |
| 
 | |
| Let p(n) be the nth prime number, and let c(n) be the nth composite number. For example, p(1) = 2, p(10) = 29, c(1) = 4 and c(10) = 18. {p(i) : i ≥ 1} = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...} {c(i) : i ≥ 1} = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ...}
 | |
| 
 | |
| Let PD the sequence of the digital roots of {p(i)} (CD is defined similarly for {c(i)}): PD = {2, 3, 5, 7, 2, 4, 8, 1, 5, 2, ...} CD = {4, 6, 8, 9, 1, 3, 5, 6, 7, 9, ...}
 | |
| 
 | |
| Let Pn be the integer formed by concatenating the first n elements of PD (Cn is defined similarly for CD). P10 = 2357248152 C10 = 4689135679
 | |
| 
 | |
| Let f(n) be the smallest positive integer that is a common superinteger of Pn and Cn. For example, f(10) = 2357246891352679, and f(100) mod 1 000 000 007 = 771661825.
 | |
| 
 | |
| Find f(10 000) mod 1 000 000 007.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler467()` should return 775181359.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler467(), 775181359);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler467() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler467();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |