Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-126-cuboid-layers.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.2 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3ea1000cf542c50fefd Problem 126: Cuboid layers 5 301753 problem-126-cuboid-layers

--description--

The minimum number of cubes to cover every visible face on a cuboid measuring 3 x 2 x 1 is twenty-two.

If we then add a second layer to this solid it would require forty-six cubes to cover every visible face, the third layer would require seventy-eight cubes, and the fourth layer would require one-hundred and eighteen cubes to cover every visible face. However, the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes; similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1 all contain forty-six cubes. We shall define C(n) to represent the number of cuboids that contain n cubes in one of its layers. So C(22) = 2, C(46) = 4, C(78) = 5, and C(118) = 8. It turns out that 154 is the least value of n for which C(n) = 10. Find the least value of n for which C(n) = 1000.

--hints--

euler126() should return 18522.

assert.strictEqual(euler126(), 18522);

--seed--

--seed-contents--

function euler126() {

  return true;
}

euler126();

--solutions--

// solution required