* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
45 lines
835 B
Markdown
45 lines
835 B
Markdown
---
|
||
id: 5900f3f51000cf542c50ff07
|
||
title: 'Problem 136: Singleton difference'
|
||
challengeType: 5
|
||
forumTopicId: 301764
|
||
dashedName: problem-136-singleton-difference
|
||
---
|
||
|
||
# --description--
|
||
|
||
The positive integers, x, y, and z, are consecutive terms of an arithmetic progression. Given that n is a positive integer, the equation, x2 − y2 − z2 = n, has exactly one solution when n = 20:
|
||
|
||
132 − 102 − 72 = 20
|
||
|
||
In fact there are twenty-five values of n below one hundred for which the equation has a unique solution.
|
||
|
||
How many values of n less than fifty million have exactly one solution?
|
||
|
||
# --hints--
|
||
|
||
`euler136()` should return 2544559.
|
||
|
||
```js
|
||
assert.strictEqual(euler136(), 2544559);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler136() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler136();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|