Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-140-modified-fibonacci-golden-nuggets.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3fa1000cf542c50ff0c Problem 140: Modified Fibonacci golden nuggets 5 301769 problem-140-modified-fibonacci-golden-nuggets

--description--

Consider the infinite polynomial series AG(x) = xG1 + x2G2 + x3G3 + ..., where Gk is the kth term of the second order recurrence relation Gk = Gk1 + Gk2, G1 = 1 and G2 = 4; that is, 1, 4, 5, 9, 14, 23, ... .

For this problem we shall be concerned with values of x for which AG(x) is a positive integer.

The corresponding values of x for the first five natural numbers are shown below.

xAG(x) (√51)/41 2/52 (√222)/63 (√1375)/144 1/25

We shall call AG(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 20th golden nugget is 211345365. Find the sum of the first thirty golden nuggets.

--hints--

euler140() should return 5673835352990.

assert.strictEqual(euler140(), 5673835352990);

--seed--

--seed-contents--

function euler140() {

  return true;
}

euler140();

--solutions--

// solution required