Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-289-eulerian-cycles.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

49 lines
1.2 KiB
Markdown

---
id: 5900f48d1000cf542c50ffa0
title: 'Problem 289: Eulerian Cycles'
challengeType: 5
forumTopicId: 301940
dashedName: problem-289-eulerian-cycles
---
# --description--
Let C(x,y) be a circle passing through the points (x, y), (x, y+1), (x+1, y) and (x+1, y+1).
For positive integers m and n, let E(m,n) be a configuration which consists of the m·n circles: { C(x,y): 0 ≤ x &lt; m, 0 ≤ y &lt; n, x and y are integers }
An Eulerian cycle on E(m,n) is a closed path that passes through each arc exactly once. Many such paths are possible on E(m,n), but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself.
The image below shows E(3,3) and an example of an Eulerian non-crossing path.
Let L(m,n) be the number of Eulerian non-crossing paths on E(m,n). For example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.
Find L(6,10) mod 1010.
# --hints--
`euler289()` should return 6567944538.
```js
assert.strictEqual(euler289(), 6567944538);
```
# --seed--
## --seed-contents--
```js
function euler289() {
return true;
}
euler289();
```
# --solutions--
```js
// solution required
```