* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
47 lines
1019 B
Markdown
47 lines
1019 B
Markdown
---
|
|
id: 5900f5091000cf542c51001b
|
|
title: 'Problem 408: Admissible paths through a grid'
|
|
challengeType: 5
|
|
forumTopicId: 302076
|
|
dashedName: problem-408-admissible-paths-through-a-grid
|
|
---
|
|
|
|
# --description--
|
|
|
|
Let's call a lattice point (x, y) inadmissible if x, y and x + y are all positive perfect squares.
|
|
|
|
For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not.
|
|
|
|
Consider a path from point (x1, y1) to point (x2, y2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.
|
|
|
|
Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007 = 341920854.
|
|
|
|
Find P(10 000 000) mod 1 000 000 007.
|
|
|
|
# --hints--
|
|
|
|
`euler408()` should return 299742733.
|
|
|
|
```js
|
|
assert.strictEqual(euler408(), 299742733);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function euler408() {
|
|
|
|
return true;
|
|
}
|
|
|
|
euler408();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|