Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-408-admissible-paths-through-a-grid.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

47 lines
1019 B
Markdown

---
id: 5900f5091000cf542c51001b
title: 'Problem 408: Admissible paths through a grid'
challengeType: 5
forumTopicId: 302076
dashedName: problem-408-admissible-paths-through-a-grid
---
# --description--
Let's call a lattice point (x, y) inadmissible if x, y and x + y are all positive perfect squares.
For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not.
Consider a path from point (x1, y1) to point (x2, y2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.
Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007 = 341920854.
Find P(10 000 000) mod 1 000 000 007.
# --hints--
`euler408()` should return 299742733.
```js
assert.strictEqual(euler408(), 299742733);
```
# --seed--
## --seed-contents--
```js
function euler408() {
return true;
}
euler408();
```
# --solutions--
```js
// solution required
```