Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-356-largest-roots-of-cubic-polynomials.md
gikf c18554dd44 fix(curriculum): clean-up Project Euler 341-360 (#42998)
* fix: clean-up Project Euler 341-360

* fix: improve wording

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>

* fix: corrections from review

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com>
Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
2021-07-29 19:14:22 +02:00

805 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4d01000cf542c50ffe3 Problem 356: Largest roots of cubic polynomials 5 302016 problem-356-largest-roots-of-cubic-polynomials

--description--

Let an be the largest real root of a polynomial g(x) = x^3 - 2^n \times x^2 + n.

For example, a_2 = 3.86619826\ldots

Find the last eight digits of \displaystyle\sum_{i = 1}^{30} \lfloor {a_i}^{987654321}\rfloor.

Note: \lfloor a\rfloor represents the floor function.

--hints--

rootsOfCubicPolynomials() should return 28010159.

assert.strictEqual(rootsOfCubicPolynomials(), 28010159);

--seed--

--seed-contents--

function rootsOfCubicPolynomials() {

  return true;
}

rootsOfCubicPolynomials();

--solutions--

// solution required