* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			65 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						|
id: 5900f3b11000cf542c50fec4
 | 
						|
title: 'Problem 69: Totient maximum'
 | 
						|
challengeType: 5
 | 
						|
forumTopicId: 302181
 | 
						|
dashedName: problem-69-totient-maximum
 | 
						|
---
 | 
						|
 | 
						|
# --description--
 | 
						|
 | 
						|
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
 | 
						|
 | 
						|
<div style='margin-left: 4em;'>
 | 
						|
 | 
						|
| <var>n</var> | Relatively Prime | φ(<var>n</var>) | <var>n</var>/φ(<var>n</var>) |
 | 
						|
| ------------ | ---------------- | --------------- | ---------------------------- |
 | 
						|
| 2            | 1                | 1               | 2                            |
 | 
						|
| 3            | 1,2              | 2               | 1.5                          |
 | 
						|
| 4            | 1,3              | 2               | 2                            |
 | 
						|
| 5            | 1,2,3,4          | 4               | 1.25                         |
 | 
						|
| 6            | 1,5              | 2               | 3                            |
 | 
						|
| 7            | 1,2,3,4,5,6      | 6               | 1.1666...                    |
 | 
						|
| 8            | 1,3,5,7          | 4               | 2                            |
 | 
						|
| 9            | 1,2,4,5,7,8      | 6               | 1.5                          |
 | 
						|
| 10           | 1,3,7,9          | 4               | 2.5                          |
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
 | 
						|
 | 
						|
Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
 | 
						|
 | 
						|
# --hints--
 | 
						|
 | 
						|
`totientMaximum()` should return a number.
 | 
						|
 | 
						|
```js
 | 
						|
assert(typeof totientMaximum() === 'number');
 | 
						|
```
 | 
						|
 | 
						|
`totientMaximum()` should return 510510.
 | 
						|
 | 
						|
```js
 | 
						|
assert.strictEqual(totientMaximum(), 510510);
 | 
						|
```
 | 
						|
 | 
						|
# --seed--
 | 
						|
 | 
						|
## --seed-contents--
 | 
						|
 | 
						|
```js
 | 
						|
function totientMaximum() {
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
totientMaximum();
 | 
						|
```
 | 
						|
 | 
						|
# --solutions--
 | 
						|
 | 
						|
```js
 | 
						|
// solution required
 | 
						|
```
 |