* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			153 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 59880443fb36441083c6c20e
 | |
| title: Euler method
 | |
| challengeType: 5
 | |
| forumTopicId: 302258
 | |
| dashedName: euler-method
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value. It is an explicit method for solving initial value problems (IVPs), as described in [the wikipedia page](<https://en.wikipedia.org/wiki/Euler method> "wp: Euler method").
 | |
| 
 | |
| The ODE has to be provided in the following form:
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$\frac{dy(t)}{dt} = f(t,y(t))$</big></li>
 | |
| </ul>
 | |
| 
 | |
| with an initial value
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$y(t_0) = y_0$</big></li>
 | |
| </ul>
 | |
| 
 | |
| To get a numeric solution, we replace the derivative on the LHS with a finite difference approximation:
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$\frac{dy(t)}{dt}  \approx \frac{y(t+h)-y(t)}{h}$</big></li>
 | |
| </ul>
 | |
| 
 | |
| then solve for $y(t+h)$:
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$y(t+h) \approx y(t) + h \, \frac{dy(t)}{dt}$</big></li>
 | |
| </ul>
 | |
| 
 | |
| which is the same as
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$y(t+h) \approx y(t) + h \, f(t,y(t))$</big></li>
 | |
| </ul>
 | |
| 
 | |
| The iterative solution rule is then:
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$y_{n+1} = y_n + h \, f(t_n, y_n)$</big></li>
 | |
| </ul>
 | |
| 
 | |
| where $h$ is the step size, the most relevant parameter for accuracy of the solution. A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand.
 | |
| 
 | |
| **Example: Newton's Cooling Law**
 | |
| 
 | |
| Newton's cooling law describes how an object of initial temperature $T(t_0) = T_0$ cools down in an environment of temperature $T_R$:
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$\frac{dT(t)}{dt} = -k \, \Delta T$</big></li>
 | |
| </ul>
 | |
| 
 | |
| or
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$\frac{dT(t)}{dt} = -k \, (T(t) - T_R)$</big></li>
 | |
| </ul>
 | |
| 
 | |
| It says that the cooling rate $\\frac{dT(t)}{dt}$ of the object is proportional to the current temperature difference $\\Delta T = (T(t) - T_R)$ to the surrounding environment.
 | |
| 
 | |
| The analytical solution, which we will compare to the numerical approximation, is
 | |
| 
 | |
| <ul style='list-style: none;'>
 | |
|   <li><big>$T(t) = T_R + (T_0 - T_R) \; e^{-k t}$</big></li>
 | |
| </ul>
 | |
| 
 | |
| # --instructions--
 | |
| 
 | |
| Implement a routine of Euler's method and then use it to solve the given example of Newton's cooling law for three different step sizes of:
 | |
| 
 | |
| <ul>
 | |
|   <li><code>2 s</code></li>
 | |
|   <li><code>5 s</code> and</li>
 | |
|   <li><code>10 s</code></li>
 | |
| </ul>
 | |
| 
 | |
| and compare with the analytical solution.
 | |
| 
 | |
| **Initial values:**
 | |
| 
 | |
| <ul>
 | |
|   <li>initial temperature <big>$T_0$</big> shall be <code>100 °C</code></li>
 | |
|   <li>room temperature <big>$T_R$</big> shall be <code>20 °C</code></li>
 | |
|   <li>cooling constant <big>$k$</big> shall be <code>0.07</code></li>
 | |
|   <li>time interval to calculate shall be from <code>0 s</code> to <code>100 s</code></li>
 | |
| </ul>  
 | |
| 
 | |
| First parameter to the function is initial time, second parameter is initial temperature, third parameter is elapsed time and fourth parameter is step size.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `eulersMethod` should be a function.
 | |
| 
 | |
| ```js
 | |
| assert(typeof eulersMethod === 'function');
 | |
| ```
 | |
| 
 | |
| `eulersMethod(0, 100, 100, 2)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof eulersMethod(0, 100, 100, 2) === 'number');
 | |
| ```
 | |
| 
 | |
| `eulersMethod(0, 100, 100, 2)` should return 20.0424631833732.
 | |
| 
 | |
| ```js
 | |
| assert.equal(eulersMethod(0, 100, 100, 2), 20.0424631833732);
 | |
| ```
 | |
| 
 | |
| `eulersMethod(0, 100, 100, 5)` should return 20.01449963666907.
 | |
| 
 | |
| ```js
 | |
| assert.equal(eulersMethod(0, 100, 100, 5), 20.01449963666907);
 | |
| ```
 | |
| 
 | |
| `eulersMethod(0, 100, 100, 10)` should return 20.000472392.
 | |
| 
 | |
| ```js
 | |
| assert.equal(eulersMethod(0, 100, 100, 10), 20.000472392);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function eulersMethod(x1, y1, x2, h) {
 | |
| 
 | |
| }
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function eulersMethod(x1, y1, x2, h) {
 | |
|   let x = x1;
 | |
|   let y = y1;
 | |
| 
 | |
|   while ((x < x2 && x1 < x2) || (x > x2 && x1 > x2)) {
 | |
|     y += h * (-0.07 * (y - 20));
 | |
|     x += h;
 | |
|   }
 | |
| 
 | |
|   return y;
 | |
| }
 | |
| ```
 |