* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3a11000cf542c50feb4
 | |
| title: 'Problem 53: Combinatoric selections'
 | |
| challengeType: 5
 | |
| forumTopicId: 302164
 | |
| dashedName: problem-53-combinatoric-selections
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| There are exactly ten ways of selecting three from five, 12345:
 | |
| 
 | |
| <div style='text-align: center;'>123, 124, 125, 134, 135, 145, 234, 235, 245, and 345</div>
 | |
| 
 | |
| In combinatorics, we use the notation, $\\displaystyle \\binom 5 3 = 10$
 | |
| 
 | |
| In general, $\\displaystyle \\binom n r = \\dfrac{n!}{r!(n-r)!}$, where $r \\le n$, $n! = n \\times (n-1) \\times ... \\times 3 \\times 2 \\times 1$, and $0! = 1$.
 | |
| 
 | |
| It is not until $n = 23$, that a value exceeds one-million: $\\displaystyle \\binom {23} {10} = 1144066$.
 | |
| 
 | |
| How many, not necessarily distinct, values of $\\displaystyle \\binom n r$ for $1 \\le n \\le 100$, are greater than one-million?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `combinatoricSelections(1000)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof combinatoricSelections(1000) === 'number');
 | |
| ```
 | |
| 
 | |
| `combinatoricSelections(1000)` should return 4626.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(combinatoricSelections(1000), 4626);
 | |
| ```
 | |
| 
 | |
| `combinatoricSelections(10000)` should return 4431.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(combinatoricSelections(10000), 4431);
 | |
| ```
 | |
| 
 | |
| `combinatoricSelections(100000)` should return 4255.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(combinatoricSelections(100000), 4255);
 | |
| ```
 | |
| 
 | |
| `combinatoricSelections(1000000)` should return 4075.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(combinatoricSelections(1000000), 4075);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function combinatoricSelections(limit) {
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| combinatoricSelections(1000000);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function combinatoricSelections(limit) {
 | |
|     const factorial = n =>
 | |
|         Array.apply(null, { length: n })
 | |
|             .map((_, i) => i + 1)
 | |
|             .reduce((p, c) => p * c, 1);
 | |
| 
 | |
|     let result = 0;
 | |
|     const nMax = 100;
 | |
| 
 | |
|     for (let n = 1; n <= nMax; n++) {
 | |
|         for (let r = 0; r <= n; r++) {
 | |
|             if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit)
 | |
|                 result++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| ```
 |