* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
47 lines
946 B
Markdown
47 lines
946 B
Markdown
---
|
||
id: 5900f4a51000cf542c50ffb7
|
||
title: 问题312:Sierpiński图上的循环路径
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-312-cyclic-paths-on-sierpiski-graphs
|
||
---
|
||
|
||
# --description--
|
||
|
||
\-1阶(S1)的Sierpiński图是等边三角形。
|
||
|
||
\-通过将Sn的三个副本放置在Sn上,从而使每对副本都有一个公共角,从而从Sn中获得Sn +1。
|
||
|
||
令C(n)为恰好一次通过Sn的所有顶点的循环数。 例如,C(3)= 8,因为可以在S3上绘制八个这样的循环,如下所示:
|
||
|
||
也可以验证: C(1)= C(2)= 1 C(5)= 71328803586048 C(10,000)mod 108 = 37652224 C(10,000)模138 = 617720485
|
||
|
||
求C(C(C(10,000))mod 138。
|
||
|
||
# --hints--
|
||
|
||
`euler312()`应该返回324681947。
|
||
|
||
```js
|
||
assert.strictEqual(euler312(), 324681947);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler312() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler312();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|