* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
78 lines
1.6 KiB
Markdown
78 lines
1.6 KiB
Markdown
---
|
||
id: 5900f3a11000cf542c50feb4
|
||
title: 问题53:组合选择
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-53-combinatoric-selections
|
||
---
|
||
|
||
# --description--
|
||
|
||
有十种方法从五种中选择三种,12345:123,124,125,134,135,145,234,235,245和345在组合学中,我们使用符号,5C3 = 10.一般来说,
|
||
|
||
nCr = n!r!(n-r)! ,其中r≤n,n! = n×(n-1)×...×3×2×1和0! = 1。
|
||
|
||
直到n = 23,一个值超过一百万:23C10 = 1144066.对于1≤n≤100,nCr的多少,不一定是不同的值大于一百万?
|
||
|
||
# --hints--
|
||
|
||
`combinatoricSelections(1000)`应返回4626。
|
||
|
||
```js
|
||
assert.strictEqual(combinatoricSelections(1000), 4626);
|
||
```
|
||
|
||
`combinatoricSelections(10000)`应该返回4431。
|
||
|
||
```js
|
||
assert.strictEqual(combinatoricSelections(10000), 4431);
|
||
```
|
||
|
||
`combinatoricSelections(100000)`应返回4255。
|
||
|
||
```js
|
||
assert.strictEqual(combinatoricSelections(100000), 4255);
|
||
```
|
||
|
||
`combinatoricSelections(1000000)`应该返回4075。
|
||
|
||
```js
|
||
assert.strictEqual(combinatoricSelections(1000000), 4075);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function combinatoricSelections(limit) {
|
||
|
||
return 1;
|
||
}
|
||
|
||
combinatoricSelections(1000000);
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
function combinatoricSelections(limit) {
|
||
const factorial = n =>
|
||
Array.apply(null, { length: n })
|
||
.map((_, i) => i + 1)
|
||
.reduce((p, c) => p * c, 1);
|
||
|
||
let result = 0;
|
||
const nMax = 100;
|
||
|
||
for (let n = 1; n <= nMax; n++) {
|
||
for (let r = 0; r <= n; r++) {
|
||
if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit)
|
||
result++;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
```
|