Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			1.4 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.4 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f41e1000cf542c50ff30 | 5 | false | Problem 177: Integer angled Quadrilaterals | 301812 | 
Description
For example, at vertex A, the two angles are CAD, CAB. We call such a quadrilateral for which all eight corner angles have integer values when measured in degrees an "integer angled quadrilateral". An example of an integer angled quadrilateral is a square, where all eight corner angles are 45°. Another example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA = 30°, CDB = 80°, ADB = 50°. What is the total number of non-similar integer angled quadrilaterals? Note: In your calculations you may assume that a calculated angle is integral if it is within a tolerance of 10-9 of an integer value.
Instructions
Tests
tests:
  - text: <code>euler177()</code> should return 129325.
    testString: assert.strictEqual(euler177(), 129325);
Challenge Seed
function euler177() {
  // Good luck!
  return true;
}
euler177();
Solution
// solution required