Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
		
			77 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4521000cf542c50ff64
 | ||
| challengeType: 5
 | ||
| isHidden: false
 | ||
| title: 'Problem 229: Four Representations using Squares'
 | ||
| forumTopicId: 301872
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id='description'>
 | ||
| Consider the number 3600. It is very special, because
 | ||
| 
 | ||
| 3600 = 482 +     362
 | ||
| 3600 = 202 + 2×402
 | ||
| 3600 = 302 + 3×302
 | ||
| 3600 = 452 + 7×152
 | ||
| 
 | ||
| Similarly, we find that 88201 = 992 + 2802 = 2872 + 2×542 = 2832 + 3×522 = 1972 + 7×842.
 | ||
| 
 | ||
| In 1747, Euler proved which numbers are representable as a sum of two squares.
 | ||
| We are interested in the numbers n which admit representations of all of the following four types:
 | ||
| 
 | ||
| n = a12 +   b12n = a22 + 2 b22n = a32 + 3 b32n = a72 + 7 b72,
 | ||
| 
 | ||
| where the ak and bk are positive integers.
 | ||
| 
 | ||
| There are 75373 such numbers that do not exceed 107.
 | ||
| 
 | ||
| How many such numbers are there that do not exceed 2×109?
 | ||
| </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id='instructions'>
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler229()</code> should return 11325263.
 | ||
|     testString: assert.strictEqual(euler229(), 11325263);
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler229() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler229();
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| 
 | ||
| </section>
 |