Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			1.2 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.2 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f46e1000cf542c50ff80 | 5 | false | Problem 257: Angular Bisectors | 301905 | 
Description
The segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG, BFE, CGF and EFG. It can be proven that for each of these four triangles the ratio area(ABC)/area(subtriangle) is rational. However, there exist triangles for which some or all of these ratios are integral.
How many triangles ABC with perimeter≤100,000,000 exist so that the ratio area(ABC)/area(AEG) is integral?
Instructions
Tests
tests:
  - text: <code>euler257()</code> should return 139012411.
    testString: assert.strictEqual(euler257(), 139012411);
Challenge Seed
function euler257() {
  // Good luck!
  return true;
}
euler257();
Solution
// solution required