Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			1.7 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.7 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f38a1000cf542c50fe9d | 5 | false | Problem 30: Digit n powers | 301953 | 
Description
Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits:
  1634 = 14 + 64 + 34 + 44
8208 = 84 + 24 + 04 + 84
9474 = 94 + 44 + 74 + 44
8208 = 84 + 24 + 04 + 84
9474 = 94 + 44 + 74 + 44
As 1 = 14 is not a sum it is not included.
The sum of these numbers is 1634 + 8208 + 9474 = 19316.
Find the sum of all the numbers that can be written as the sum of n powers of their digits.
Instructions
Tests
tests:
  - text: <code>digitnPowers(2)</code> should return a number.
    testString: assert(typeof digitnPowers(2) === 'number');
  - text: <code>digitnPowers(2)</code> should return 0.
    testString: assert(digitnPowers(2) == 0);
  - text: <code>digitnPowers(3)</code> should return 1301.
    testString: assert(digitnPowers(3) == 1301);
  - text: <code>digitnPowers(4)</code> should return 19316.
    testString: assert(digitnPowers(4) == 19316);
  - text: <code>digitnPowers(5)</code> should return 443839.
    testString: assert(digitnPowers(5) == 443839);
Challenge Seed
function digitnPowers(n) {
  // Good luck!
  return n;
}
digitnPowers(5);
Solution
// solution required