Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			2.1 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			2.1 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f3931000cf542c50fea6 | 5 | false | Problem 39: Integer right triangles | 302054 | 
Description
If p is the perimeter of a right angle triangle with integral length sides, {a,b,c}, there are exactly three solutions for p = 120.
{20,48,52}, {24,45,51}, {30,40,50}
For which value of p ≤ n, is the number of solutions maximized?
Instructions
Tests
tests:
  - text: <code>intRightTriangles(500)</code> should return a number.
    testString: assert(typeof intRightTriangles(500) === 'number');
  - text: <code>intRightTriangles(500)</code> should return 420.
    testString: assert(intRightTriangles(500) == 420);
  - text: <code>intRightTriangles(800)</code> should return 720.
    testString: assert(intRightTriangles(800) == 720);
  - text: <code>intRightTriangles(900)</code> should return 840.
    testString: assert(intRightTriangles(900) == 840);
  - text: <code>intRightTriangles(1000)</code> should return 840.
    testString: assert(intRightTriangles(1000) == 840);
Challenge Seed
function intRightTriangles(n) {
  // Good luck!
  return n;
}
intRightTriangles(500);
Solution
// Original idea for this solution came from
// https://www.xarg.org/puzzle/project-euler/problem-39/
function intRightTriangles(n) {
  // store the number of triangles with a given perimeter
  let triangles = {};
  // a is the shortest side
  for (let a = 3; a < n / 3; a++)
  // o is the opposite side and is at least as long as a
    for (let o = a; o < n / 2; o++) {
      let h = Math.sqrt(a * a + o * o); // hypotenuse
      let p = a + o + h;  // perimeter
      if ((h % 1) === 0 && p <= n) {
        triangles[p] = (triangles[p] || 0) + 1;
      }
    }
  let max = 0, maxp = null;
  for (let p in triangles) {
    if (max < triangles[p]) {
      max = triangles[p];
      maxp = parseInt(p);
    }
  }
  return maxp;
}