Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
	
		
			1.3 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.3 KiB
		
	
	
	
	
	
	
	
id, challengeType, isHidden, title, forumTopicId
| id | challengeType | isHidden | title | forumTopicId | 
|---|---|---|---|---|
| 5900f5001000cf542c510012 | 5 | false | Problem 404: Crisscross Ellipses | 302072 | 
Description
b is the distance to the origin of the two intersection points closest to the origin and c is the distance of the two other intersection points. We call an ordered triplet (a, b, c) a canonical ellipsoidal triplet if a, b and c are positive integers. For example, (209, 247, 286) is a canonical ellipsoidal triplet.
Let C(N) be the number of distinct canonical ellipsoidal triplets (a, b, c) for a ≤ N. It can be verified that C(103) = 7, C(104) = 106 and C(106) = 11845.
Find C(1017).
Instructions
Tests
tests:
  - text: <code>euler404()</code> should return 1199215615081353.
    testString: assert.strictEqual(euler404(), 1199215615081353);
Challenge Seed
function euler404() {
  // Good luck!
  return true;
}
euler404();
Solution
// solution required