Co-authored-by: Oliver Eyton-Williams <ojeytonwilliams@gmail.com> Co-authored-by: Kristofer Koishigawa <scissorsneedfoodtoo@gmail.com> Co-authored-by: Beau Carnes <beaucarnes@gmail.com>
		
			
				
	
	
		
			97 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			97 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3a11000cf542c50feb4
 | ||
| challengeType: 5
 | ||
| isHidden: false
 | ||
| title: 'Problem 53: Combinatoric selections'
 | ||
| forumTopicId: 302164
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id='description'>
 | ||
| 
 | ||
| There are exactly ten ways of selecting three from five, 12345:
 | ||
| 
 | ||
| <div style='text-align: center;'>123, 124, 125, 134, 135, 145, 234, 235, 245, and 345</div>
 | ||
| 
 | ||
| In combinatorics, we use the notation, $\displaystyle \binom 5 3 = 10$
 | ||
| 
 | ||
| In general, $\displaystyle \binom n r = \dfrac{n!}{r!(n-r)!}$, where $r \le n$, $n! = n \times (n-1) \times ... \times 3 \times 2 \times 1$, and $0! = 1$.
 | ||
| 
 | ||
| It is not until $n = 23$, that a value exceeds one-million: $\displaystyle \binom {23} {10} = 1144066$.
 | ||
| 
 | ||
| How many, not necessarily distinct, values of  $\displaystyle \binom n r$ for $1 \le n \le 100$, are greater than one-million?
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id='instructions'>
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>combinatoricSelections(1000)</code> should return a number.
 | ||
|     testString: assert(typeof combinatoricSelections(1000) === 'number');
 | ||
|   - text: <code>combinatoricSelections(1000)</code> should return 4626.
 | ||
|     testString: assert.strictEqual(combinatoricSelections(1000), 4626);
 | ||
|   - text: <code>combinatoricSelections(10000)</code> should return 4431.
 | ||
|     testString: assert.strictEqual(combinatoricSelections(10000), 4431);
 | ||
|   - text: <code>combinatoricSelections(100000)</code> should return 4255.
 | ||
|     testString: assert.strictEqual(combinatoricSelections(100000), 4255);
 | ||
|   - text: <code>combinatoricSelections(1000000)</code> should return 4075.
 | ||
|     testString: assert.strictEqual(combinatoricSelections(1000000), 4075);
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function combinatoricSelections(limit) {
 | ||
|   // Good luck!
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| combinatoricSelections(1000000);
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| 
 | ||
| ```js
 | ||
| function combinatoricSelections(limit) {
 | ||
|     const factorial = n =>
 | ||
|         Array.apply(null, { length: n })
 | ||
|             .map((_, i) => i + 1)
 | ||
|             .reduce((p, c) => p * c, 1);
 | ||
| 
 | ||
|     let result = 0;
 | ||
|     const nMax = 100;
 | ||
| 
 | ||
|     for (let n = 1; n <= nMax; n++) {
 | ||
|         for (let r = 0; r <= n; r++) {
 | ||
|             if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit)
 | ||
|                 result++;
 | ||
|         }
 | ||
|     }
 | ||
| 
 | ||
|     return result;
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| </section>
 |