Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-278-linear-combinations-of-semiprimes.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

45 lines
1.1 KiB
Markdown

---
id: 5900f4831000cf542c50ff95
title: 'Problem 278: Linear Combinations of Semiprimes'
challengeType: 5
forumTopicId: 301928
dashedName: problem-278-linear-combinations-of-semiprimes
---
# --description--
Given the values of integers 1 &lt; a1 &lt; a2 &lt;... &lt; an, consider the linear combination q1a1 + q2a2 + ... + qnan = b, using only integer values qk ≥ 0.
Note that for a given set of ak, it may be that not all values of b are possible. For instance, if a1 = 5 and a2 = 7, there are no q1 ≥ 0 and q2 ≥ 0 such that b could be 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23.
In fact, 23 is the largest impossible value of b for a1 = 5 and a2 = 7. We therefore call f(5, 7) = 23. Similarly, it can be shown that f(6, 10, 15)=29 and f(14, 22, 77) = 195.
Find ∑ f(p*q,p*r,q\*r), where p, q and r are prime numbers and p &lt; q &lt; r &lt; 5000.
# --hints--
`euler278()` should return 1228215747273908500.
```js
assert.strictEqual(euler278(), 1228215747273908500);
```
# --seed--
## --seed-contents--
```js
function euler278() {
return true;
}
euler278();
```
# --solutions--
```js
// solution required
```