* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
54 lines
1.3 KiB
Markdown
54 lines
1.3 KiB
Markdown
---
|
|
id: 5900f4ee1000cf542c510000
|
|
title: 'Problem 385: Ellipses inside triangles'
|
|
challengeType: 5
|
|
forumTopicId: 302049
|
|
dashedName: problem-385-ellipses-inside-triangles
|
|
---
|
|
|
|
# --description--
|
|
|
|
For any triangle T in the plane, it can be shown that there is a unique ellipse with largest area that is completely inside T.
|
|
|
|
For a given n, consider triangles T such that:
|
|
|
|
- the vertices of T have integer coordinates with absolute value ≤ n, and
|
|
- the foci1 of the largest-area ellipse inside T are (√13,0) and (-√13,0).
|
|
|
|
Let A(n) be the sum of the areas of all such triangles.
|
|
|
|
For example, if n = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0) and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36 = 72.
|
|
|
|
It can be verified that A(10) = 252, A(100) = 34632 and A(1000) = 3529008.
|
|
|
|
Find A(1 000 000 000).
|
|
|
|
1The foci (plural of focus) of an ellipse are two points A and B such that for every point P on the boundary of the ellipse, AP + PB is constant.
|
|
|
|
# --hints--
|
|
|
|
`euler385()` should return 3776957309612154000.
|
|
|
|
```js
|
|
assert.strictEqual(euler385(), 3776957309612154000);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
function euler385() {
|
|
|
|
return true;
|
|
}
|
|
|
|
euler385();
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
// solution required
|
|
```
|