* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4201000cf542c50ff33 | Problem 180: Rational zeros of a function of three variables | 5 | 301816 | problem-180-rational-zeros-of-a-function-of-three-variables |
--description--
For any integer n, consider the three functions
f1,n(x,y,z) = xn+1 + yn+1 − zn+1f2,n(x,y,z) = (xy + yz + zx)*(xn-1 + yn-1 − zn-1)f3,n(x,y,z) = xyz*(xn-2 + yn-2 − zn-2)
and their combination
fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) − f3,n(x,y,z)
We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with
0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0.
Let s(x,y,z) = x + y + z.
Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t must be in reduced form.
Find u + v.
--hints--
euler180()
should return 285196020571078980.
assert.strictEqual(euler180(), 285196020571078980);
--seed--
--seed-contents--
function euler180() {
return true;
}
euler180();
--solutions--
// solution required