* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f4e51000cf542c50fff6 | Problem 374: Maximum Integer Partition Product | 5 | 302036 | problem-374-maximum-integer-partition-product |
--description--
An integer partition of a number n is a way of writing n as a sum of positive integers.
Partitions that differ only in the order of their summands are considered the same. A partition of n into distinct parts is a partition of n in which every part occurs at most once.
The partitions of 5 into distinct parts are: 5, 4+1 and 3+2.
Let f(n) be the maximum product of the parts of any such partition of n into distinct parts and let m(n) be the number of elements of any such partition of n with that product.
So f(5)=6 and m(5)=2.
For n=10 the partition with the largest product is 10=2+3+5, which gives f(10)=30 and m(10)=3. And their product, f(10)·m(10) = 30·3 = 90
It can be verified that ∑f(n)·m(n) for 1 ≤ n ≤ 100 = 1683550844462.
Find ∑f(n)·m(n) for 1 ≤ n ≤ 1014. Give your answer modulo 982451653, the 50 millionth prime.
--hints--
euler374()
should return 334420941.
assert.strictEqual(euler374(), 334420941);
--seed--
--seed-contents--
function euler374() {
return true;
}
euler374();
--solutions--
// solution required