Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

878 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f53a1000cf542c51004c Problem 461: Almost Pi 5 302136 problem-461-almost-pi

--description--

Let fn(k) = ek/n - 1, for all non-negative integers k.

Remarkably, f200(6) + f200(75) + f200(89) + f200(226) = 3.141592644529… ≈ π.

In fact, it is the best approximation of π of the form fn(a) + fn(b) + fn(c) + fn(d) for n = 200.

Let g(n) = a2 + b2 + c2 + d 2 for a, b, c, d that minimize the error: | fn(a) + fn(b) + fn(c) + fn(d) - π|

(where |x| denotes the absolute value of x).

You are given g(200) = 62 + 752 + 892 + 2262 = 64658.

Find g(10000).

--hints--

euler461() should return 159820276.

assert.strictEqual(euler461(), 159820276);

--seed--

--seed-contents--

function euler461() {

  return true;
}

euler461();

--solutions--

// solution required