168 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| title: Support Vector Machine
 | ||
| localeTitle: 支持向量机
 | ||
| ---
 | ||
| ## 支持向量机
 | ||
| 
 | ||
| 支持向量机(SVM)是由分离超平面正式定义的判别分类器。换句话说,给定标记的训练数据(监督学习),算法输出最佳超平面,其对新示例进行分类。它通过最小化超平面附近的数据点之间的边距来实现这一点。
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| SVM成本函数试图用分段线性逼近逻辑函数。该ML算法用于分类问题,并且是监督学习算法子集的一部分。
 | ||
| 
 | ||
| ### 成本函数
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 成本函数用于训练SVM。通过最小化J(theta)的值,我们可以确保SVM尽可能准确。在等式中,函数cost1和cost0指的是y = 1的示例的成本和y = 0的示例的成本。 SVM的成本由内核(相似性)函数决定。
 | ||
| 
 | ||
| ### 仁
 | ||
| 
 | ||
| 多项式特征可能在计算上很昂贵,并且可能会减慢大型数据集的运行时间。 不要添加更多的多项式特征,而是添加“地标”,用它来测试其他数据点的接近程度。 训练集的每个成员都是一个里程碑。 内核是“相似度函数”,用于衡量输入与特定标记的接近程度。
 | ||
| 
 | ||
| ### 大边距分类器
 | ||
| 
 | ||
| SVM将找到以最大边距分割数据的线(或更一般情况下的超平面)。 虽然异常值可能会使线条向一个方向摆动,但足够小的C值将强制执行正则化。 这个新的正则化与1 / \\ lambda的作用相同,如线性和逻辑回归中所见,但在这里我们修改成本组件。
 | ||
| 
 | ||
| #### 更多信息:
 | ||
| 
 | ||
| [Andrew Ng的ML课程](https://www.coursera.org/learn/machine-learning/) [独立视频讲座](https://www.youtube.com/watch?v=1NxnPkZM9bc) [维基百科上的SVM](https://en.wikipedia.org/wiki/Support_vector_machine)
 | ||
| 
 | ||
| 以下是为python中的SVM训练,预测和查找准确性而编写的代码。这是使用Numpy完成的,但是,我们也可以在函数调用中使用scikit-learn编写。
 | ||
| 
 | ||
| ```Python
 | ||
| import numpy as np 
 | ||
|  
 | ||
|  
 | ||
|  class Svm (object): 
 | ||
|     """" Svm classifier """ 
 | ||
|  
 | ||
|     def __init__ (self, inputDim, outputDim): 
 | ||
|         self.W = None 
 | ||
|  
 | ||
|         # - Generate a random svm weight matrix to compute loss                 # 
 | ||
|         #   with standard normal distribution and Standard deviation = 0.01.    # 
 | ||
|  
 | ||
|         sigma =0.01 
 | ||
|         self.W = sigma * np.random.randn(inputDim,outputDim) 
 | ||
|  
 | ||
|  
 | ||
|  
 | ||
|     def calLoss (self, x, y, reg): 
 | ||
|         """ 
 | ||
|         Svm loss function 
 | ||
|         D: Input dimension. 
 | ||
|         C: Number of Classes. 
 | ||
|         N: Number of example. 
 | ||
|         Inputs: 
 | ||
|         - x: A numpy array of shape (batchSize, D). 
 | ||
|         - y: A numpy array of shape (N,) where value < C. 
 | ||
|         - reg: (float) regularization strength. 
 | ||
|         Returns a tuple of: 
 | ||
|         - loss as single float. 
 | ||
|         - gradient with respect to weights self.W (dW) with the same shape of self.W. 
 | ||
|         """ 
 | ||
|         loss = 0.0 
 | ||
|         dW = np.zeros_like(self.W) 
 | ||
|  
 | ||
|         # - Compute the svm loss and store to loss variable.                        # 
 | ||
|         # - Compute gradient and store to dW variable.                              # 
 | ||
|         # - Use L2 regularization                                                  # 
 | ||
|  
 | ||
|         #Calculating score matrix 
 | ||
|         s = x.dot(self.W) 
 | ||
|         #Score with yi 
 | ||
|         s_yi = s[np.arange(x.shape[0]),y] 
 | ||
|         #finding the delta 
 | ||
|         delta = s- s_yi[:,np.newaxis]+1 
 | ||
|         #loss for samples 
 | ||
|         loss_i = np.maximum(0,delta) 
 | ||
|         loss_i[np.arange(x.shape[0]),y]=0 
 | ||
|         loss = np.sum(loss_i)/x.shape[0] 
 | ||
|         #Loss with regularization 
 | ||
|         loss += reg*np.sum(self.W*self.W) 
 | ||
|         #Calculating ds 
 | ||
|         ds = np.zeros_like(delta) 
 | ||
|         ds[delta > 0] = 1 
 | ||
|         ds[np.arange(x.shape[0]),y] = 0 
 | ||
|         ds[np.arange(x.shape[0]),y] = -np.sum(ds, axis=1) 
 | ||
|  
 | ||
|         dW = (1/x.shape[0]) * (xT).dot(ds) 
 | ||
|         dW = dW + (2* reg* self.W) 
 | ||
|  
 | ||
|  
 | ||
|         return loss, dW 
 | ||
|  
 | ||
|     def train (self, x, y, lr=1e-3, reg=1e-5, iter=100, batchSize=200, verbose=False): 
 | ||
|         """ 
 | ||
|         Train this Svm classifier using stochastic gradient descent. 
 | ||
|         D: Input dimension. 
 | ||
|         C: Number of Classes. 
 | ||
|         N: Number of example. 
 | ||
|         Inputs: 
 | ||
|         - x: training data of shape (N, D) 
 | ||
|         - y: output data of shape (N, ) where value < C 
 | ||
|         - lr: (float) learning rate for optimization. 
 | ||
|         - reg: (float) regularization strength. 
 | ||
|         - iter: (integer) total number of iterations. 
 | ||
|         - batchSize: (integer) number of example in each batch running. 
 | ||
|         - verbose: (boolean) Print log of loss and training accuracy. 
 | ||
|         Outputs: 
 | ||
|         A list containing the value of the loss at each training iteration. 
 | ||
|         """ 
 | ||
|  
 | ||
|         # Run stochastic gradient descent to optimize W. 
 | ||
|         lossHistory = [] 
 | ||
|         for i in range(iter): 
 | ||
|             xBatch = None 
 | ||
|             yBatch = None 
 | ||
|  
 | ||
|             # - Sample batchSize from training data and save to xBatch and yBatch   # 
 | ||
|             # - After sampling xBatch should have shape (batchSize, D)              # 
 | ||
|             #                  yBatch (batchSize, )                                 # 
 | ||
|             # - Use that sample for gradient decent optimization.                   # 
 | ||
|             # - Update the weights using the gradient and the learning rate.        # 
 | ||
|  
 | ||
|             #creating batch 
 | ||
|             num_train = np.random.choice(x.shape[0], batchSize) 
 | ||
|             xBatch = x[num_train] 
 | ||
|             yBatch = y[num_train] 
 | ||
|             loss, dW = self.calLoss(xBatch,yBatch,reg) 
 | ||
|             self.W= self.W - lr * dW 
 | ||
|             lossHistory.append(loss) 
 | ||
|  
 | ||
|             # Print loss for every 100 iterations 
 | ||
|             if verbose and i % 100 == 0 and len(lossHistory) is not 0: 
 | ||
|                 print ('Loop {0} loss {1}'.format(i, lossHistory[i])) 
 | ||
|  
 | ||
|         return lossHistory 
 | ||
|  
 | ||
|     def predict (self, x,): 
 | ||
|         """ 
 | ||
|         Predict the y output. 
 | ||
|         Inputs: 
 | ||
|         - x: training data of shape (N, D) 
 | ||
|         Returns: 
 | ||
|         - yPred: output data of shape (N, ) where value < C 
 | ||
|         """ 
 | ||
|         yPred = np.zeros(x.shape[0]) 
 | ||
|  
 | ||
|         # -  Store the predict output in yPred                                    # 
 | ||
|  
 | ||
|         s = x.dot(self.W) 
 | ||
|         yPred = np.argmax(s, axis=1) 
 | ||
|         return yPred 
 | ||
|  
 | ||
|  
 | ||
|     def calAccuracy (self, x, y): 
 | ||
|         acc = 0 
 | ||
|  
 | ||
|         # -  Calculate accuracy of the predict value and store to acc variable 
 | ||
|         yPred = self.predict(x) 
 | ||
|         acc = np.mean(y == yPred)*100 
 | ||
|         return acc 
 | ||
| ```
 | ||
| 
 | ||
| #### 更多信息:
 | ||
| 
 | ||
| [Scikit-learn SVM](http://scikit-learn.org/stable/modules/svm.html) |