docs: Translate some of the README docs into Chinese (#1744)
* docs: translated docs to zh * docs: translated doc of sharding pattern to Chinese * docs: translated doc of factory pattern to Chinese * docs: translated doc of factory-kit pattern to Chinese Co-authored-by: Subhrodip Mohanta <hello@subho.xyz>
This commit is contained in:
parent
b5aaa94794
commit
068fa0371e
312
zh/circuit-breaker/README.md
Normal file
312
zh/circuit-breaker/README.md
Normal file
@ -0,0 +1,312 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Circuit Breaker
|
||||
folder: circuit-breaker
|
||||
permalink: /patterns/circuit-breaker/
|
||||
categories: Behavioral
|
||||
tags:
|
||||
- Performance
|
||||
- Decoupling
|
||||
- Cloud distributed
|
||||
---
|
||||
|
||||
## 含义
|
||||
|
||||
以这样的方式(译者:指断路器方式)处理昂贵的远程服务调用,可以防止单个服务/组件的故障导致整个应用程序崩溃,同时我们可以尽快地进行服务重连。
|
||||
|
||||
## 解释
|
||||
|
||||
现实世界案例
|
||||
|
||||
> 设想一下,一个网络应用程序既有本地文件/图像,又有用于获取数据的远程服务。这些远程服务可能在某些时候是健康的、有反应的,也可能在某些时候由于各种原因而变得缓慢和无反应。因此,如果其中一个远程服务速度慢或不能成功响应,我们的应用程序将尝试使用多个线程/进程从远程服务中获取响应,很快所有的线程/进程都会挂起(也称为线程饥饿 thread starvation),从而导致我们整个 Web 应用程序崩溃。我们应该能够检测到这种情况,并向用户显示一个适当的信息,以便用户可以探索应用程序的其他部分,而不受远程服务故障的影响。同时,其他正常工作的服务应该保持运作,不受这次故障的影响。
|
||||
|
||||
简而言之
|
||||
|
||||
> 断路器允许优雅地处理失败的远程服务。当我们的应用程序的所有部分都高度解耦时,这种方式的效果会很好,一个组件的失败并不会导致其他部分停止工作。
|
||||
|
||||
维基百科的解释
|
||||
|
||||
> 断路器是现代软件开发中使用的一种设计模式。它用于检测故障,并封装了防止故障不断复发的逻辑,在维护期间,临时地处理外部系统故障或意外的系统问题。
|
||||
|
||||
## Programmatic Example
|
||||
|
||||
那么,这一切是如何实现的呢?考虑到上面的例子,我们将在一个简单的例子中模拟这个功能。一个监控服务(译者:下图的 Monitoring Service)模拟了网络应用,进行本地和远程调用。
|
||||
|
||||
该服务架构如下:
|
||||
|
||||

|
||||
|
||||
终端用户(译者:上图的 End User)应用的代码如下:
|
||||
|
||||
```java
|
||||
@Slf4j
|
||||
public class App {
|
||||
|
||||
private static final Logger LOGGER = LoggerFactory.getLogger(App.class);
|
||||
|
||||
/**
|
||||
* Program entry point.
|
||||
*
|
||||
* @param args command line args
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
|
||||
var serverStartTime = System.nanoTime();
|
||||
|
||||
var delayedService = new DelayedRemoteService(serverStartTime, 5);
|
||||
var delayedServiceCircuitBreaker = new DefaultCircuitBreaker(delayedService, 3000, 2,
|
||||
2000 * 1000 * 1000);
|
||||
|
||||
var quickService = new QuickRemoteService();
|
||||
var quickServiceCircuitBreaker = new DefaultCircuitBreaker(quickService, 3000, 2,
|
||||
2000 * 1000 * 1000);
|
||||
|
||||
//Create an object of monitoring service which makes both local and remote calls
|
||||
var monitoringService = new MonitoringService(delayedServiceCircuitBreaker,
|
||||
quickServiceCircuitBreaker);
|
||||
|
||||
//Fetch response from local resource
|
||||
LOGGER.info(monitoringService.localResourceResponse());
|
||||
|
||||
//Fetch response from delayed service 2 times, to meet the failure threshold
|
||||
LOGGER.info(monitoringService.delayedServiceResponse());
|
||||
LOGGER.info(monitoringService.delayedServiceResponse());
|
||||
|
||||
//Fetch current state of delayed service circuit breaker after crossing failure threshold limit
|
||||
//which is OPEN now
|
||||
LOGGER.info(delayedServiceCircuitBreaker.getState());
|
||||
|
||||
//Meanwhile, the delayed service is down, fetch response from the healthy quick service
|
||||
LOGGER.info(monitoringService.quickServiceResponse());
|
||||
LOGGER.info(quickServiceCircuitBreaker.getState());
|
||||
|
||||
//Wait for the delayed service to become responsive
|
||||
try {
|
||||
LOGGER.info("Waiting for delayed service to become responsive");
|
||||
Thread.sleep(5000);
|
||||
} catch (InterruptedException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
//Check the state of delayed circuit breaker, should be HALF_OPEN
|
||||
LOGGER.info(delayedServiceCircuitBreaker.getState());
|
||||
|
||||
//Fetch response from delayed service, which should be healthy by now
|
||||
LOGGER.info(monitoringService.delayedServiceResponse());
|
||||
//As successful response is fetched, it should be CLOSED again.
|
||||
LOGGER.info(delayedServiceCircuitBreaker.getState());
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
监控服务代码(译者:上图的 monitoring service):
|
||||
|
||||
```java
|
||||
public class MonitoringService {
|
||||
|
||||
private final CircuitBreaker delayedService;
|
||||
|
||||
private final CircuitBreaker quickService;
|
||||
|
||||
public MonitoringService(CircuitBreaker delayedService, CircuitBreaker quickService) {
|
||||
this.delayedService = delayedService;
|
||||
this.quickService = quickService;
|
||||
}
|
||||
|
||||
//Assumption: Local service won't fail, no need to wrap it in a circuit breaker logic
|
||||
public String localResourceResponse() {
|
||||
return "Local Service is working";
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch response from the delayed service (with some simulated startup time).
|
||||
*
|
||||
* @return response string
|
||||
*/
|
||||
public String delayedServiceResponse() {
|
||||
try {
|
||||
return this.delayedService.attemptRequest();
|
||||
} catch (RemoteServiceException e) {
|
||||
return e.getMessage();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetches response from a healthy service without any failure.
|
||||
*
|
||||
* @return response string
|
||||
*/
|
||||
public String quickServiceResponse() {
|
||||
try {
|
||||
return this.quickService.attemptRequest();
|
||||
} catch (RemoteServiceException e) {
|
||||
return e.getMessage();
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
可以看出,它直接进行了获取本地资源的调用,但它把对远程(昂贵的)服务的调用包装在一个断路器对象中,这样可以防止出现如下故障:
|
||||
|
||||
```java
|
||||
public class DefaultCircuitBreaker implements CircuitBreaker {
|
||||
|
||||
private final long timeout;
|
||||
private final long retryTimePeriod;
|
||||
private final RemoteService service;
|
||||
long lastFailureTime;
|
||||
private String lastFailureResponse;
|
||||
int failureCount;
|
||||
private final int failureThreshold;
|
||||
private State state;
|
||||
private final long futureTime = 1000 * 1000 * 1000 * 1000;
|
||||
|
||||
/**
|
||||
* Constructor to create an instance of Circuit Breaker.
|
||||
*
|
||||
* @param timeout Timeout for the API request. Not necessary for this simple example
|
||||
* @param failureThreshold Number of failures we receive from the depended service before changing
|
||||
* state to 'OPEN'
|
||||
* @param retryTimePeriod Time period after which a new request is made to remote service for
|
||||
* status check.
|
||||
*/
|
||||
DefaultCircuitBreaker(RemoteService serviceToCall, long timeout, int failureThreshold,
|
||||
long retryTimePeriod) {
|
||||
this.service = serviceToCall;
|
||||
// We start in a closed state hoping that everything is fine
|
||||
this.state = State.CLOSED;
|
||||
this.failureThreshold = failureThreshold;
|
||||
// Timeout for the API request.
|
||||
// Used to break the calls made to remote resource if it exceeds the limit
|
||||
this.timeout = timeout;
|
||||
this.retryTimePeriod = retryTimePeriod;
|
||||
//An absurd amount of time in future which basically indicates the last failure never happened
|
||||
this.lastFailureTime = System.nanoTime() + futureTime;
|
||||
this.failureCount = 0;
|
||||
}
|
||||
|
||||
// Reset everything to defaults
|
||||
@Override
|
||||
public void recordSuccess() {
|
||||
this.failureCount = 0;
|
||||
this.lastFailureTime = System.nanoTime() + futureTime;
|
||||
this.state = State.CLOSED;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void recordFailure(String response) {
|
||||
failureCount = failureCount + 1;
|
||||
this.lastFailureTime = System.nanoTime();
|
||||
// Cache the failure response for returning on open state
|
||||
this.lastFailureResponse = response;
|
||||
}
|
||||
|
||||
// Evaluate the current state based on failureThreshold, failureCount and lastFailureTime.
|
||||
protected void evaluateState() {
|
||||
if (failureCount >= failureThreshold) { //Then something is wrong with remote service
|
||||
if ((System.nanoTime() - lastFailureTime) > retryTimePeriod) {
|
||||
//We have waited long enough and should try checking if service is up
|
||||
state = State.HALF_OPEN;
|
||||
} else {
|
||||
//Service would still probably be down
|
||||
state = State.OPEN;
|
||||
}
|
||||
} else {
|
||||
//Everything is working fine
|
||||
state = State.CLOSED;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getState() {
|
||||
evaluateState();
|
||||
return state.name();
|
||||
}
|
||||
|
||||
/**
|
||||
* Break the circuit beforehand if it is known service is down Or connect the circuit manually if
|
||||
* service comes online before expected.
|
||||
*
|
||||
* @param state State at which circuit is in
|
||||
*/
|
||||
@Override
|
||||
public void setState(State state) {
|
||||
this.state = state;
|
||||
switch (state) {
|
||||
case OPEN:
|
||||
this.failureCount = failureThreshold;
|
||||
this.lastFailureTime = System.nanoTime();
|
||||
break;
|
||||
case HALF_OPEN:
|
||||
this.failureCount = failureThreshold;
|
||||
this.lastFailureTime = System.nanoTime() - retryTimePeriod;
|
||||
break;
|
||||
default:
|
||||
this.failureCount = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Executes service call.
|
||||
*
|
||||
* @return Value from the remote resource, stale response or a custom exception
|
||||
*/
|
||||
@Override
|
||||
public String attemptRequest() throws RemoteServiceException {
|
||||
evaluateState();
|
||||
if (state == State.OPEN) {
|
||||
// return cached response if the circuit is in OPEN state
|
||||
return this.lastFailureResponse;
|
||||
} else {
|
||||
// Make the API request if the circuit is not OPEN
|
||||
try {
|
||||
//In a real application, this would be run in a thread and the timeout
|
||||
//parameter of the circuit breaker would be utilized to know if service
|
||||
//is working. Here, we simulate that based on server response itself
|
||||
var response = service.call();
|
||||
// Yay!! the API responded fine. Let's reset everything.
|
||||
recordSuccess();
|
||||
return response;
|
||||
} catch (RemoteServiceException ex) {
|
||||
recordFailure(ex.getMessage());
|
||||
throw ex;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
上述模式是如何防止失败的呢?让我们通过它所实现的这个有限状态机来了解。
|
||||
|
||||

|
||||
|
||||
- 我们用 `timeout`(超时)、 `failureThreshold` (失败阈值)、`retryTimePeriod`(重试时间周期) 参数初始化断路器对象 ,用于确定 API 的适应性。
|
||||
- 最初,断路器处于 `closed` 关闭状态,没有发生对 API 的远程调用。
|
||||
- 每次调用成功,我们就把状态重置为开始时的样子。
|
||||
- 如果失败的次数超过了一定的阈值(`failureThreshold`),断路器就会进入 `open` 开启状态,它的作用就像一个开启的电路,阻止远程服务的调用,从而节省资源。
|
||||
- 一旦我们超过重试时间周期(`retryTimePeriod`),断路器就会转到 `half-open` 半启用状态,并再次调用远程服务,检查服务是否正常,以便我们可以提供最新的响应内容。如果远程服务调用失败会使断路器回到 `open` 状态,并在重试超时后进行另一次尝试;如果远程服务调用成功则使断路器进入 `closed` 状态,这样一切又开始正常工作。
|
||||
|
||||
## 类图
|
||||
|
||||

|
||||
|
||||
## 适用场景
|
||||
|
||||
在以下场景下,可以使用断路器模式:
|
||||
|
||||
- 构建一个高可用的应用程序,某些些服务的失败不会导致整个应用程序的崩溃。
|
||||
- 构建一个持续运行(长期在线)的应用程序,以便其组件可以在不完全关闭的情况下进行升级。
|
||||
|
||||
## 相关模式
|
||||
|
||||
- [Retry Pattern](https://github.com/iluwatar/java-design-patterns/tree/master/retry)
|
||||
|
||||
## 现实案例
|
||||
|
||||
* [Spring Circuit Breaker module](https://spring.io/guides/gs/circuit-breaker)
|
||||
* [Netflix Hystrix API](https://github.com/Netflix/Hystrix)
|
||||
|
||||
## 引用
|
||||
|
||||
* [Understanding Circuit Breaker Pattern](https://itnext.io/understand-circuitbreaker-design-pattern-with-simple-practical-example-92a752615b42)
|
||||
* [Martin Fowler on Circuit Breaker](https://martinfowler.com/bliki/CircuitBreaker.html)
|
||||
* [Fault tolerance in a high volume, distributed system](https://medium.com/netflix-techblog/fault-tolerance-in-a-high-volume-distributed-system-91ab4faae74a)
|
||||
* [Circuit Breaker pattern](https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker)
|
29
zh/collection-pipeline/README.md
Normal file
29
zh/collection-pipeline/README.md
Normal file
@ -0,0 +1,29 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Collection Pipeline
|
||||
folder: collection-pipeline
|
||||
permalink: /patterns/collection-pipeline/
|
||||
categories: Functional
|
||||
tags:
|
||||
- Reactive
|
||||
---
|
||||
|
||||
## 释义
|
||||
**集合管道(Collection Pipeline)**包含**函数组合(Function Composition)**和**集合管道(Collection Pipeline)**两组合概念,这是两种函数式编程模式,你可以在代码中结合这两种模式来进行集合迭代。
|
||||
在函数式编程中,可以通过一系列较小的模块化函数或操作来编排复杂的操作。这一系列函数被称为函数组合。当一个数据集合流经一个函数组合时,它就成为一个集合管道。函数组合和集合管道是函数式编程中经常使用的两种设计模式。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
在以下场景适用集合管道模式:
|
||||
|
||||
* 当你想执行一组连续的算子操作,其中一个算子收集的输出需要被输入到下一个算子中
|
||||
* 当你在代码中需要使用大量的中间状态语句时
|
||||
* 当你在代码中使用大量的循环语句时
|
||||
|
||||
## 引用
|
||||
|
||||
* [Function composition and the Collection Pipeline pattern](https://www.ibm.com/developerworks/library/j-java8idioms2/index.html)
|
||||
* [Martin Fowler](https://martinfowler.com/articles/collection-pipeline/)
|
||||
* [Java8 Streams](https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html)
|
121
zh/composite-entity/README.md
Normal file
121
zh/composite-entity/README.md
Normal file
@ -0,0 +1,121 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Composite Entity
|
||||
folder: composite-entity
|
||||
permalink: /patterns/composite-entity/
|
||||
categories: Structural
|
||||
tags:
|
||||
- Enterprise Integration Pattern
|
||||
---
|
||||
|
||||
## 含义
|
||||
|
||||
复合实体模式用于对一组相关联的持久化对象进行建模、描述和管理,用于取代对这组对象描述为单独粒度的实体。
|
||||
|
||||
## 解释
|
||||
|
||||
现实例子
|
||||
|
||||
> 对于一个控制台对象,需要管理许多接口功能。通过使用复合实体模式,将消息对象、信号对象等依赖性对象组合在一起,直接使用单个对象对其进行控制。
|
||||
|
||||
简单地说
|
||||
|
||||
> 复合实体模式允许使用一个统一对象来管理一组相互关联的对象
|
||||
|
||||
**编程示例**
|
||||
|
||||
我们需要一个通用的解决方案来解决上述的控制台问题。我们引入了以下的通用复合对象。
|
||||
|
||||
```java
|
||||
public abstract class DependentObject<T> {
|
||||
|
||||
T data;
|
||||
|
||||
public void setData(T message) {
|
||||
this.data = message;
|
||||
}
|
||||
|
||||
public T getData() {
|
||||
return data;
|
||||
}
|
||||
}
|
||||
|
||||
public abstract class CoarseGrainedObject<T> {
|
||||
|
||||
DependentObject<T>[] dependentObjects;
|
||||
|
||||
public void setData(T... data) {
|
||||
IntStream.range(0, data.length).forEach(i -> dependentObjects[i].setData(data[i]));
|
||||
}
|
||||
|
||||
public T[] getData() {
|
||||
return (T[]) Arrays.stream(dependentObjects).map(DependentObject::getData).toArray();
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
专用的 `console` 复合实体继承自这个基类,如下所示。
|
||||
|
||||
```java
|
||||
public class MessageDependentObject extends DependentObject<String> {
|
||||
|
||||
}
|
||||
|
||||
public class SignalDependentObject extends DependentObject<String> {
|
||||
|
||||
}
|
||||
|
||||
public class ConsoleCoarseGrainedObject extends CoarseGrainedObject<String> {
|
||||
|
||||
@Override
|
||||
public String[] getData() {
|
||||
super.getData();
|
||||
return new String[]{
|
||||
dependentObjects[0].getData(), dependentObjects[1].getData()
|
||||
};
|
||||
}
|
||||
|
||||
public void init() {
|
||||
dependentObjects = new DependentObject[]{
|
||||
new MessageDependentObject(), new SignalDependentObject()};
|
||||
}
|
||||
}
|
||||
|
||||
public class CompositeEntity {
|
||||
|
||||
private final ConsoleCoarseGrainedObject console = new ConsoleCoarseGrainedObject();
|
||||
|
||||
public void setData(String message, String signal) {
|
||||
console.setData(message, signal);
|
||||
}
|
||||
|
||||
public String[] getData() {
|
||||
return console.getData();
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
现在我们使用 `console` 复合实体来进行消息对象、信号对象的分配。
|
||||
|
||||
```java
|
||||
var console = new CompositeEntity();
|
||||
console.init();
|
||||
console.setData("No Danger", "Green Light");
|
||||
Arrays.stream(console.getData()).forEach(LOGGER::info);
|
||||
console.setData("Danger", "Red Light");
|
||||
Arrays.stream(console.getData()).forEach(LOGGER::info);
|
||||
```
|
||||
|
||||
## 类图
|
||||
|
||||

|
||||
|
||||
## 适用场景
|
||||
|
||||
复合实体模式适用于以下场景:
|
||||
|
||||
* 你想要通过一个对象来管理多个依赖对象,已调整对象之间的细化程度。同时将依赖对象的生命周期托管到这个粗粒度的复合实体对象。
|
||||
## 引用
|
||||
|
||||
* [Composite Entity Pattern in wikipedia](https://en.wikipedia.org/wiki/Composite_entity_pattern)
|
31
zh/data-bus/README.md
Normal file
31
zh/data-bus/README.md
Normal file
@ -0,0 +1,31 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Data Bus
|
||||
folder: data-bus
|
||||
permalink: /patterns/data-bus/
|
||||
|
||||
categories: Architectural
|
||||
tags:
|
||||
- Decoupling
|
||||
---
|
||||
|
||||
## 含义
|
||||
|
||||
数据总线模式(译者:实际上,就是 Event-Bus 消息总线模式)允许在一个应用程序的组件之间收发消息/事件,而不需要这些组件相互感知,它们只需要知道所发送/接收的消息/事件的类型即可。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
可以在以下场景使用数据总线模式:
|
||||
|
||||
* 你希望由你的组件自己决定要接收哪些信息/事件
|
||||
* 你希望实现多对多的通信
|
||||
* 你希望你的组件不需要感知彼此
|
||||
|
||||
## 相关模式
|
||||
数据总线类似于以下设计模式:
|
||||
|
||||
* 中介者模式(Mediator pattern),由数据总线成员自己决定是否要接受任何给定的消息。
|
||||
* 观察者模式(Observer pattern),但进一步支持了多对多的通信。
|
||||
* 发布/订阅模式(Publish/Subscribe pattern),但是数据总线将发布者和订阅者解耦。
|
25
zh/data-mapper/README.md
Normal file
25
zh/data-mapper/README.md
Normal file
@ -0,0 +1,25 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Data Mapper
|
||||
folder: data-mapper
|
||||
permalink: /patterns/data-mapper/
|
||||
categories: Architectural
|
||||
tags:
|
||||
- Decoupling
|
||||
---
|
||||
|
||||
## 含义
|
||||
一个用于在持久化对象和数据库之间传输数据的映射器,同时保持它们之间和映射器本身的独立性。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
数据映射器适用于以下场景:
|
||||
|
||||
* 当你想把数据对象从数据库访问层解耦时时
|
||||
* 当你想编写多个数据查询/持久化实现时
|
||||
|
||||
## 引用
|
||||
|
||||
* [Data Mapper](http://richard.jp.leguen.ca/tutoring/soen343-f2010/tutorials/implementing-data-mapper/)
|
21
zh/double-checked-locking/README.md
Normal file
21
zh/double-checked-locking/README.md
Normal file
@ -0,0 +1,21 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Double Checked Locking
|
||||
folder: double-checked-locking
|
||||
permalink: /patterns/double-checked-locking/
|
||||
categories: Idiom
|
||||
tags:
|
||||
- Performance
|
||||
---
|
||||
|
||||
## 含义
|
||||
通过先测试锁定标准("锁提示")而不实际获取锁的方式来减少获取锁的开销。只有当锁定标准检查表明需要锁定时,才进行实际的锁定逻辑。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
在以下场景适合使用双重锁检查模式:
|
||||
|
||||
* 在创建对象时有存在并发的访问。如单例模式中,你想创建同一个类的单个实例,如果存在两个或更多的线程对实例进行判空,仅仅检查该该实例是否为空可能是不够的。
|
||||
* 在一个方法上存在并发访问,该方法的行为是根据一些约束条件而改变,而这些约束条件在该方法中也会发生变化。
|
27
zh/factory-kit/README.md
Normal file
27
zh/factory-kit/README.md
Normal file
@ -0,0 +1,27 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Factory Kit
|
||||
folder: factory-kit
|
||||
permalink: /patterns/factory-kit/
|
||||
categories: Creational
|
||||
tags:
|
||||
- Extensibility
|
||||
---
|
||||
|
||||
## 含义
|
||||
使用分离的构建器和工厂接口来定义一个不可变内容的工厂。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
工厂套件模式适用于与以下场景:
|
||||
|
||||
* 一个类无法预知它需要创建的对象的类别
|
||||
- 你只是想要一个新的自定义构建器(builder)的实例,而非全局的构建器
|
||||
- 你明确地想要定义对象的类型,而且工厂可以创建这些对象
|
||||
- 你想要分离构建器(builder)和创建器(creator)接口
|
||||
|
||||
## 引用
|
||||
|
||||
* [Design Pattern Reloaded by Remi Forax: ](https://www.youtube.com/watch?v=-k2X7guaArU)
|
141
zh/factory/README.md
Normal file
141
zh/factory/README.md
Normal file
@ -0,0 +1,141 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Factory
|
||||
folder: factory
|
||||
permalink: /patterns/factory/
|
||||
categories: Creational
|
||||
tags:
|
||||
- Gang of Four
|
||||
---
|
||||
|
||||
## 也被称为
|
||||
|
||||
* 简单工厂
|
||||
* 静态工厂方法
|
||||
|
||||
## 含义
|
||||
|
||||
在工厂类中提供一个封装的静态工厂方法,用于隐藏对象初始化细节,使客户端代码可以专注于使用,而不用关心类的初始化过程。
|
||||
|
||||
## 解释
|
||||
|
||||
现实例子
|
||||
|
||||
>
|
||||
> 假设我们有一个需要连接到 SQL Server 的 Web 应用,但现在我们需要切换到连接 Oracle。为了不修改现有代码的情况下做到这一点,我们需要实现简单工厂模式。在这种模式下,可以通过调用一个静态方法来创建与给定数据库的连接。
|
||||
|
||||
维基百科
|
||||
|
||||
> 工厂类是一个用于创建其他对象的对象 -- 从形式上看,工厂方法是一个用于返回不同原型或类型的函数或方法。
|
||||
|
||||
**编程示例**
|
||||
|
||||
我们有一个 `Car` 接口,以及实现类 `Ford`, `Ferrari`。
|
||||
|
||||
```java
|
||||
public interface Car {
|
||||
String getDescription();
|
||||
}
|
||||
|
||||
public class Ford implements Car {
|
||||
|
||||
static final String DESCRIPTION = "This is Ford.";
|
||||
|
||||
@Override
|
||||
public String getDescription() {
|
||||
return DESCRIPTION;
|
||||
}
|
||||
}
|
||||
|
||||
public class Ferrari implements Car {
|
||||
|
||||
static final String DESCRIPTION = "This is Ferrari.";
|
||||
|
||||
@Override
|
||||
public String getDescription() {
|
||||
return DESCRIPTION;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Enumeration above represents types of cars that we support (`Ford` and `Ferrari`).
|
||||
|
||||
以下的枚举用于表示支持的 `Car` 类型(`Ford` 和 `Ferrari`)
|
||||
|
||||
```java
|
||||
public enum CarType {
|
||||
|
||||
FORD(Ford::new),
|
||||
FERRARI(Ferrari::new);
|
||||
|
||||
private final Supplier<Car> constructor;
|
||||
|
||||
CarType(Supplier<Car> constructor) {
|
||||
this.constructor = constructor;
|
||||
}
|
||||
|
||||
public Supplier<Car> getConstructor() {
|
||||
return this.constructor;
|
||||
}
|
||||
}
|
||||
```
|
||||
接着我们实现了一个静态方法 `getCar` 用于封装工厂类 `CarsFactory` 创建 `Car` 具体对象实例的细节。
|
||||
|
||||
```java
|
||||
public class CarsFactory {
|
||||
|
||||
public static Car getCar(CarType type) {
|
||||
return type.getConstructor().get();
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
现在我们可以在客户端代码中通过工厂类创建不同类型的 `Car` 对象实例。
|
||||
|
||||
```java
|
||||
var car1 = CarsFactory.getCar(CarType.FORD);
|
||||
var car2 = CarsFactory.getCar(CarType.FERRARI);
|
||||
LOGGER.info(car1.getDescription());
|
||||
LOGGER.info(car2.getDescription());
|
||||
```
|
||||
|
||||
程序输出:
|
||||
|
||||
```java
|
||||
This is Ford.
|
||||
This is Ferrari.
|
||||
```
|
||||
|
||||
## 类图
|
||||
|
||||

|
||||
|
||||
## 适用场景
|
||||
|
||||
在你只关心对象的创建,但不关心如何创建、管理它的时候,请使用简单工厂模式。
|
||||
|
||||
**优点**
|
||||
|
||||
* 可以把对象创建代码集中在一个地方,避免在代码库存散布 "new" 关键字。
|
||||
* 可以让代码更加低耦合。它的一些主要优点包括更好的可测试性、更好的可读性、组件可替换性、可拓展性、更好的隔离性。
|
||||
|
||||
**缺点**
|
||||
|
||||
* 会使代码变得比原来的更加复杂一些。
|
||||
|
||||
## 现实案例
|
||||
|
||||
* [java.util.Calendar#getInstance()](https://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html#getInstance--)
|
||||
* [java.util.ResourceBundle#getBundle()](https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html#getBundle-java.lang.String-)
|
||||
* [java.text.NumberFormat#getInstance()](https://docs.oracle.com/javase/8/docs/api/java/text/NumberFormat.html#getInstance--)
|
||||
* [java.nio.charset.Charset#forName()](https://docs.oracle.com/javase/8/docs/api/java/nio/charset/Charset.html#forName-java.lang.String-)
|
||||
* [java.net.URLStreamHandlerFactory#createURLStreamHandler(String)](https://docs.oracle.com/javase/8/docs/api/java/net/URLStreamHandlerFactory.html) (Returns different singleton objects, depending on a protocol)
|
||||
* [java.util.EnumSet#of()](https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html#of(E))
|
||||
* [javax.xml.bind.JAXBContext#createMarshaller()](https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/JAXBContext.html#createMarshaller--) and other similar methods.
|
||||
|
||||
## 相关模式
|
||||
|
||||
* [Factory Method](https://java-design-patterns.com/patterns/factory-method/)
|
||||
* [Factory Kit](https://java-design-patterns.com/patterns/factory-kit/)
|
||||
* [Abstract Factory](https://java-design-patterns.com/patterns/abstract-factory/)
|
||||
|
30
zh/sharding/README.md
Normal file
30
zh/sharding/README.md
Normal file
@ -0,0 +1,30 @@
|
||||
---
|
||||
layout: pattern
|
||||
title: Sharding
|
||||
folder: sharding
|
||||
permalink: /patterns/sharding/
|
||||
categories: Behavioral
|
||||
tags:
|
||||
- Performance
|
||||
- Cloud distributed
|
||||
---
|
||||
|
||||
## 含义
|
||||
分片模式是指将数据存储划分为水平分区或分片。每个分片都有相同的模式,但持有自己独特的数据子集。
|
||||
|
||||
一个分片本身就是一个数据存储(它可以包含许多不同类型的实体的数据),运行在作为存储节点的服务器上。
|
||||
|
||||
## 类图
|
||||

|
||||
|
||||
## 适用场景
|
||||
这种设计模式提供了一下的好处:
|
||||
|
||||
- 你可以通过增加在额外的存储节点上,运行的更多分片来实现系统扩容。
|
||||
- 系统可以使用现成的廉价硬件,而不是为每个存储节点使用专门(或者昂贵)的服务器硬件。
|
||||
- 你可以通过平衡各分片之间的工作负载来减少竞争,以提高性能。
|
||||
- 在云环境中,分片可以在物理上靠近访问该节点数据的用户。
|
||||
|
||||
## 引用
|
||||
|
||||
* [Sharding pattern](https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding)
|
Loading…
x
Reference in New Issue
Block a user