Compare commits
1 Commits
master
...
caching-pa
Author | SHA1 | Date | |
---|---|---|---|
|
a8355988b2 |
@ -10,20 +10,326 @@ tags:
|
||||
---
|
||||
|
||||
## Intent
|
||||
To avoid expensive re-acquisition of resources by not releasing
|
||||
the resources immediately after their use. The resources retain their identity, are kept in some
|
||||
fast-access storage, and are re-used to avoid having to acquire them again.
|
||||
|
||||
The caching pattern avoids expensive re-acquisition of resources by not releasing them immediately
|
||||
after use. The resources retain their identity, are kept in some fast-access storage, and are
|
||||
re-used to avoid having to acquire them again.
|
||||
|
||||
## Explanation
|
||||
|
||||
Real world example
|
||||
|
||||
> A team is working on a website that provides new homes for abandoned cats. People can post their
|
||||
> cats on the website after registering, but all the new posts require approval from one of the
|
||||
> site moderators. The user accounts of the site moderators contain a specific flag and the data
|
||||
> is stored in a MongoDB database. Checking for the moderator flag each time a post is viewed
|
||||
> becomes expensive and it's a good idea to utilize caching here.
|
||||
|
||||
In plain words
|
||||
|
||||
> Caching pattern keeps frequently needed data in fast-access storage to improve performance.
|
||||
|
||||
Wikipedia says:
|
||||
|
||||
> In computing, a cache is a hardware or software component that stores data so that future
|
||||
> requests for that data can be served faster; the data stored in a cache might be the result of
|
||||
> an earlier computation or a copy of data stored elsewhere. A cache hit occurs when the requested
|
||||
> data can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by
|
||||
> reading data from the cache, which is faster than recomputing a result or reading from a slower
|
||||
> data store; thus, the more requests that can be served from the cache, the faster the system
|
||||
> performs.
|
||||
|
||||
**Programmatic Example**
|
||||
|
||||
Let's first look at the data layer of our application. The interesting classes are `UserAccount`
|
||||
which is a simple Java object containing the user account details, and `DbManager` which handles
|
||||
reading and writing of these objects to/from MongoDB database.
|
||||
|
||||
```java
|
||||
@Setter
|
||||
@Getter
|
||||
@AllArgsConstructor
|
||||
@ToString
|
||||
public class UserAccount {
|
||||
private String userId;
|
||||
private String userName;
|
||||
private String additionalInfo;
|
||||
}
|
||||
|
||||
@Slf4j
|
||||
public final class DbManager {
|
||||
|
||||
private static MongoClient mongoClient;
|
||||
private static MongoDatabase db;
|
||||
|
||||
private DbManager() { /*...*/ }
|
||||
|
||||
public static void createVirtualDb() { /*...*/ }
|
||||
|
||||
public static void connect() throws ParseException { /*...*/ }
|
||||
|
||||
public static UserAccount readFromDb(String userId) { /*...*/ }
|
||||
|
||||
public static void writeToDb(UserAccount userAccount) { /*...*/ }
|
||||
|
||||
public static void updateDb(UserAccount userAccount) { /*...*/ }
|
||||
|
||||
public static void upsertDb(UserAccount userAccount) { /*...*/ }
|
||||
}
|
||||
```
|
||||
|
||||
In the example, we are demonstrating various different caching policies
|
||||
|
||||
* Write-through writes data to the cache and DB in a single transaction
|
||||
* Write-around writes data immediately into the DB instead of the cache
|
||||
* Write-behind writes data into the cache initially whilst the data is only written into the DB
|
||||
when the cache is full
|
||||
* Cache-aside pushes the responsibility of keeping the data synchronized in both data sources to
|
||||
the application itself
|
||||
* Read-through strategy is also included in the aforementioned strategies and it returns data from
|
||||
the cache to the caller if it exists, otherwise queries from DB and stores it into the cache for
|
||||
future use.
|
||||
|
||||
The cache implementation in `LruCache` is a hash table accompanied by a doubly
|
||||
linked-list. The linked-list helps in capturing and maintaining the LRU data in the cache. When
|
||||
data is queried (from the cache), added (to the cache), or updated, the data is moved to the front
|
||||
of the list to depict itself as the most-recently-used data. The LRU data is always at the end of
|
||||
the list.
|
||||
|
||||
```java
|
||||
@Slf4j
|
||||
public class LruCache {
|
||||
|
||||
static class Node {
|
||||
String userId;
|
||||
UserAccount userAccount;
|
||||
Node previous;
|
||||
Node next;
|
||||
|
||||
public Node(String userId, UserAccount userAccount) {
|
||||
this.userId = userId;
|
||||
this.userAccount = userAccount;
|
||||
}
|
||||
}
|
||||
|
||||
/* ... omitted details ... */
|
||||
|
||||
public LruCache(int capacity) {
|
||||
this.capacity = capacity;
|
||||
}
|
||||
|
||||
public UserAccount get(String userId) {
|
||||
if (cache.containsKey(userId)) {
|
||||
var node = cache.get(userId);
|
||||
remove(node);
|
||||
setHead(node);
|
||||
return node.userAccount;
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public void set(String userId, UserAccount userAccount) {
|
||||
if (cache.containsKey(userId)) {
|
||||
var old = cache.get(userId);
|
||||
old.userAccount = userAccount;
|
||||
remove(old);
|
||||
setHead(old);
|
||||
} else {
|
||||
var newNode = new Node(userId, userAccount);
|
||||
if (cache.size() >= capacity) {
|
||||
LOGGER.info("# Cache is FULL! Removing {} from cache...", end.userId);
|
||||
cache.remove(end.userId); // remove LRU data from cache.
|
||||
remove(end);
|
||||
setHead(newNode);
|
||||
} else {
|
||||
setHead(newNode);
|
||||
}
|
||||
cache.put(userId, newNode);
|
||||
}
|
||||
}
|
||||
|
||||
public boolean contains(String userId) {
|
||||
return cache.containsKey(userId);
|
||||
}
|
||||
|
||||
public void remove(Node node) { /* ... */ }
|
||||
public void setHead(Node node) { /* ... */ }
|
||||
public void invalidate(String userId) { /* ... */ }
|
||||
public boolean isFull() { /* ... */ }
|
||||
public UserAccount getLruData() { /* ... */ }
|
||||
public void clear() { /* ... */ }
|
||||
public List<UserAccount> getCacheDataInListForm() { /* ... */ }
|
||||
public void setCapacity(int newCapacity) { /* ... */ }
|
||||
}
|
||||
```
|
||||
|
||||
The next layer we are going to look at is `CacheStore` which implements the different caching
|
||||
strategies.
|
||||
|
||||
```java
|
||||
@Slf4j
|
||||
public class CacheStore {
|
||||
|
||||
private static LruCache cache;
|
||||
|
||||
/* ... details omitted ... */
|
||||
|
||||
public static UserAccount readThrough(String userId) {
|
||||
if (cache.contains(userId)) {
|
||||
LOGGER.info("# Cache Hit!");
|
||||
return cache.get(userId);
|
||||
}
|
||||
LOGGER.info("# Cache Miss!");
|
||||
UserAccount userAccount = DbManager.readFromDb(userId);
|
||||
cache.set(userId, userAccount);
|
||||
return userAccount;
|
||||
}
|
||||
|
||||
public static void writeThrough(UserAccount userAccount) {
|
||||
if (cache.contains(userAccount.getUserId())) {
|
||||
DbManager.updateDb(userAccount);
|
||||
} else {
|
||||
DbManager.writeToDb(userAccount);
|
||||
}
|
||||
cache.set(userAccount.getUserId(), userAccount);
|
||||
}
|
||||
|
||||
public static void clearCache() {
|
||||
if (cache != null) {
|
||||
cache.clear();
|
||||
}
|
||||
}
|
||||
|
||||
public static void flushCache() {
|
||||
LOGGER.info("# flushCache...");
|
||||
Optional.ofNullable(cache)
|
||||
.map(LruCache::getCacheDataInListForm)
|
||||
.orElse(List.of())
|
||||
.forEach(DbManager::updateDb);
|
||||
}
|
||||
|
||||
/* ... omitted the implementation of other caching strategies ... */
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
`AppManager` helps to bridge the gap in communication between the main class and the application's
|
||||
back-end. DB connection is initialized through this class. The chosen caching strategy/policy is
|
||||
also initialized here. Before the cache can be used, the size of the cache has to be set. Depending
|
||||
on the chosen caching policy, `AppManager` will call the appropriate function in the `CacheStore`
|
||||
class.
|
||||
|
||||
```java
|
||||
@Slf4j
|
||||
public final class AppManager {
|
||||
|
||||
private static CachingPolicy cachingPolicy;
|
||||
|
||||
private AppManager() {
|
||||
}
|
||||
|
||||
public static void initDb(boolean useMongoDb) { /* ... */ }
|
||||
|
||||
public static void initCachingPolicy(CachingPolicy policy) { /* ... */ }
|
||||
|
||||
public static void initCacheCapacity(int capacity) { /* ... */ }
|
||||
|
||||
public static UserAccount find(String userId) {
|
||||
if (cachingPolicy == CachingPolicy.THROUGH || cachingPolicy == CachingPolicy.AROUND) {
|
||||
return CacheStore.readThrough(userId);
|
||||
} else if (cachingPolicy == CachingPolicy.BEHIND) {
|
||||
return CacheStore.readThroughWithWriteBackPolicy(userId);
|
||||
} else if (cachingPolicy == CachingPolicy.ASIDE) {
|
||||
return findAside(userId);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
public static void save(UserAccount userAccount) {
|
||||
if (cachingPolicy == CachingPolicy.THROUGH) {
|
||||
CacheStore.writeThrough(userAccount);
|
||||
} else if (cachingPolicy == CachingPolicy.AROUND) {
|
||||
CacheStore.writeAround(userAccount);
|
||||
} else if (cachingPolicy == CachingPolicy.BEHIND) {
|
||||
CacheStore.writeBehind(userAccount);
|
||||
} else if (cachingPolicy == CachingPolicy.ASIDE) {
|
||||
saveAside(userAccount);
|
||||
}
|
||||
}
|
||||
|
||||
public static String printCacheContent() {
|
||||
return CacheStore.print();
|
||||
}
|
||||
|
||||
/* ... details omitted ... */
|
||||
}
|
||||
```
|
||||
|
||||
Here is what we do in the main class of the application.
|
||||
|
||||
```java
|
||||
@Slf4j
|
||||
public class App {
|
||||
|
||||
public static void main(String[] args) {
|
||||
AppManager.initDb(false);
|
||||
AppManager.initCacheCapacity(3);
|
||||
var app = new App();
|
||||
app.useReadAndWriteThroughStrategy();
|
||||
app.useReadThroughAndWriteAroundStrategy();
|
||||
app.useReadThroughAndWriteBehindStrategy();
|
||||
app.useCacheAsideStategy();
|
||||
}
|
||||
|
||||
public void useReadAndWriteThroughStrategy() {
|
||||
LOGGER.info("# CachingPolicy.THROUGH");
|
||||
AppManager.initCachingPolicy(CachingPolicy.THROUGH);
|
||||
var userAccount1 = new UserAccount("001", "John", "He is a boy.");
|
||||
AppManager.save(userAccount1);
|
||||
LOGGER.info(AppManager.printCacheContent());
|
||||
AppManager.find("001");
|
||||
AppManager.find("001");
|
||||
}
|
||||
|
||||
public void useReadThroughAndWriteAroundStrategy() { /* ... */ }
|
||||
|
||||
public void useReadThroughAndWriteBehindStrategy() { /* ... */ }
|
||||
|
||||
public void useCacheAsideStategy() { /* ... */ }
|
||||
}
|
||||
```
|
||||
|
||||
Finally, here is some of the console output from the program.
|
||||
|
||||
```
|
||||
12:32:53.845 [main] INFO com.iluwatar.caching.App - # CachingPolicy.THROUGH
|
||||
12:32:53.900 [main] INFO com.iluwatar.caching.App -
|
||||
--CACHE CONTENT--
|
||||
UserAccount(userId=001, userName=John, additionalInfo=He is a boy.)
|
||||
----
|
||||
```
|
||||
|
||||
## Class diagram
|
||||
|
||||

|
||||
|
||||
## Applicability
|
||||
|
||||
Use the Caching pattern(s) when
|
||||
|
||||
* Repetitious acquisition, initialization, and release of the same resource causes unnecessary performance overhead.
|
||||
* Repetitious acquisition, initialization, and release of the same resource cause unnecessary
|
||||
performance overhead.
|
||||
|
||||
## Related patterns
|
||||
|
||||
* [Proxy](https://java-design-patterns.com/patterns/proxy/)
|
||||
|
||||
## Credits
|
||||
|
||||
* [Write-through, write-around, write-back: Cache explained](http://www.computerweekly.com/feature/Write-through-write-around-write-back-Cache-explained)
|
||||
* [Read-Through, Write-Through, Write-Behind, and Refresh-Ahead Caching](https://docs.oracle.com/cd/E15357_01/coh.360/e15723/cache_rtwtwbra.htm#COHDG5177)
|
||||
* [Cache-Aside pattern](https://docs.microsoft.com/en-us/azure/architecture/patterns/cache-aside)
|
||||
* [Java EE 8 High Performance: Master techniques such as memory optimization, caching, concurrency, and multithreading to achieve maximum performance from your enterprise applications](https://www.amazon.com/gp/product/178847306X/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=178847306X&linkId=e948720055599f248cdac47da9125ff4)
|
||||
* [Java Performance: In-Depth Advice for Tuning and Programming Java 8, 11, and Beyond](https://www.amazon.com/gp/product/1492056111/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=1492056111&linkId=7e553581559b9ec04221259e52004b08)
|
||||
* [Effective Java](https://www.amazon.com/gp/product/B078H61SCH/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=B078H61SCH&linkId=f06607a0b48c76541ef19c5b8b9e7882)
|
||||
* [Java Performance: The Definitive Guide: Getting the Most Out of Your Code](https://www.amazon.com/gp/product/1449358454/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=javadesignpat-20&creative=9325&linkCode=as2&creativeASIN=1449358454&linkId=475c18363e350630cc0b39ab681b2687)
|
||||
|
@ -25,6 +25,7 @@ package com.iluwatar.caching;
|
||||
|
||||
import java.text.ParseException;
|
||||
import java.util.Optional;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
|
||||
/**
|
||||
* AppManager helps to bridge the gap in communication between the main class and the application's
|
||||
@ -33,6 +34,7 @@ import java.util.Optional;
|
||||
* Depending on the chosen caching policy, AppManager will call the appropriate function in the
|
||||
* CacheStore class.
|
||||
*/
|
||||
@Slf4j
|
||||
public final class AppManager {
|
||||
|
||||
private static CachingPolicy cachingPolicy;
|
||||
@ -50,7 +52,7 @@ public final class AppManager {
|
||||
try {
|
||||
DbManager.connect();
|
||||
} catch (ParseException e) {
|
||||
e.printStackTrace();
|
||||
LOGGER.error("Error connecting to MongoDB", e);
|
||||
}
|
||||
} else {
|
||||
DbManager.createVirtualDb();
|
||||
|
@ -30,6 +30,7 @@ import com.mongodb.client.model.UpdateOptions;
|
||||
import java.text.ParseException;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.bson.Document;
|
||||
|
||||
/**
|
||||
@ -41,6 +42,7 @@ import org.bson.Document;
|
||||
* underlying data storage (connect()) or a simple Java data structure to (temporarily) store the
|
||||
* data/objects during runtime (createVirtualDB()).</p>
|
||||
*/
|
||||
@Slf4j
|
||||
public final class DbManager {
|
||||
|
||||
private static MongoClient mongoClient;
|
||||
@ -83,7 +85,7 @@ public final class DbManager {
|
||||
try {
|
||||
connect();
|
||||
} catch (ParseException e) {
|
||||
e.printStackTrace();
|
||||
LOGGER.error("Error connecting to MongoDB", e);
|
||||
}
|
||||
}
|
||||
var iterable = db
|
||||
@ -110,7 +112,7 @@ public final class DbManager {
|
||||
try {
|
||||
connect();
|
||||
} catch (ParseException e) {
|
||||
e.printStackTrace();
|
||||
LOGGER.error("Error connecting to MongoDB", e);
|
||||
}
|
||||
}
|
||||
db.getCollection(CachingConstants.USER_ACCOUNT).insertOne(
|
||||
@ -132,7 +134,7 @@ public final class DbManager {
|
||||
try {
|
||||
connect();
|
||||
} catch (ParseException e) {
|
||||
e.printStackTrace();
|
||||
LOGGER.error("Error connecting to MongoDB", e);
|
||||
}
|
||||
}
|
||||
db.getCollection(CachingConstants.USER_ACCOUNT).updateOne(
|
||||
@ -153,7 +155,7 @@ public final class DbManager {
|
||||
try {
|
||||
connect();
|
||||
} catch (ParseException e) {
|
||||
e.printStackTrace();
|
||||
LOGGER.error("Error connecting to MongoDB", e);
|
||||
}
|
||||
}
|
||||
db.getCollection(CachingConstants.USER_ACCOUNT).updateOne(
|
||||
|
Loading…
x
Reference in New Issue
Block a user